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1. Introduction

Philosophers of sciénce have traditionally been fascinated by the
regular polyhedra, Pythagoras and Plato assigned them to the primary
elements; Kepler speculated about them in “Harmonices Mundi™; and more
recently W.Heisenberg, fully aware of this tradition, offers us a mod-
ern interpretation of Plato's opinion, Summing up, he says:

“Die letzte Wurzel der Erscheinungen ist also nicht die Materie,
sondern das mathematische Gesetz, die Symmetrie, die mathematische
Form,™[1]

(The ultimate root of the phenomena is not the matter but the mathe~
matical law, the symmetry, the mathematical form,)

Because the intention of this treatise hardly can be explained bet=
ter, we add another quotation, in which we certainly may read molecule

as well as elementary particle:

“Fragt man bei Plato, welches der Inhalt seiner Formen sei, aus wel~
chem Stoff also seine regulfren Kirper schlieBlieh gemacht seien, so
erh¥lt man die Antwort: aus Mathematik. Denn die Dreiecke, aus denen
die regul¥ren K¥rper gebildet werden sollen, sind ja nicht selbst Ma-
terie, da sie als zweidimensionale Gebilde keinen Raum erfiillen., Sie
sind gedankliche Konstruktionen, die durch die Art ihrer Zusammenfligung
riumliche Gebilde darstellen. In &hnlicher Weise sind in der heutigen
Physik die Eigenwerte, die die Elementarteilchen darstellen, eben Ei=-
genwerte einer Gleichung und in sofern rein mathematische Gebilde, de-
nen keine Substanz zugrunde liegt, In gewisser Weise klinnte man viel=-
leicht noch die Energie als Substanz bezeichnen, aber auch die Energie
und ihre Erhaltung ist eine mathematische Folge einer Invarianz-Eigen=-
schaft der Gleichung, sie ist gewissermaBen in der Gleichung enthalten.
Letzten Endes wird also der Materiebegriff in beiden F#llen auf Mathe~
matik zuriickgeftthrt. Der innerste Kern alles Stofflichen ist ftlr uns
wie ftir Plato eine “Form"”, nicht irgend ein materieller Inhalt, “[2]

(If one asks in Plato, what is the essence of his forms, i.e.which
material his regular solids are made of, one gets the answer: of mathe=-
matics. For the triangles constituting the regular solids are no matter
by themselves, because as two=-dimensional entities they cover no space.
They are constructions of thought, which constitute spatial formations
by the mode of their composition. Similarly in modern physics the eigen=-
values representing the elementary particles are just eigenvalues of
an equation and thus purely mathematical entities based on no substrate.
In a sense one might specify the energy as a substrate, but even the
energy and its conservation is a mathematical consequence of an in-
variance of the equation, it is so to speak embodied in the equation.
In the end in both cases, the concept of matter is reduced to mathemat-
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ics. For us, as for Plato, the very essence of reality is a question of
“form™, not of material substrate.)

The present treatise is devoted to the elaboration of such princi-
ples of form, with particular respect to molecular physics and quantum
chemistry, These principles appear on two levels, The classical symme=-
tries of the polyhedra have been replaced in their importance by more
fundamental symmetries, which are shared by all elementary particles,
and consguently by all molecules, These symmetries, including the homo-
geneity and the isotropy of space~time and the permutational symmetry
according to Pauli’ s principle, specify the possible forms of Schrtdin-
ger equations and of state functions, These symmetries will be presup=-
posed here, and will concern us only in the case of the multi-centre
integrals (section 13). For these integrals they prescribe general
principles of form not restricted to symmetric molecules,

The main subject of this treatise is the symmetry of the polyhedra
realized in “the architecture of molecules”™, Pauling's book of this
title [3] may be regarded as a modern illustration of Plato, and of
Kepler’s statement, “geometria est archetypus pulchritudinis mundi™.
The triangles mentioned by Plato as the constituents of the polyhedra
are essential to the present analysis, too.

The analysis of symmetry means application of group theory. Except
for the theory of transition-metal ions, this application in chemistry
has been more or less qualitative: labeling of states and normal vibra-
tions, splitting and selection rules. The construction of symmetry-
adapted linear combinations (SALC),going beyond this point, has re-
mained unsystematic, because the linear combination coefficients - in
contrast to the Clebsch-Gordan coefficients -~ have not been considered
a basis of an algebra,

Against the "myth of gqualitative group theory™ 4], the Wigner-
Eckart theorem in its several varieties yields qualitative results and
makes the quantitative analysis of symmetry a theory of reduced matrix
elements or, more generally speaking, a theory of invariants., In atom-
ic spectroscopy, the reduced matrix elements are related to the radial
integrals of the atomic orbitals, the Slater integrals for instance,
and therefore have a lucid meaning, The same holds for the ligand field
theory, which is focussed on the central transition-metal ion, But what
is the concrete meaning of the reduced matrix elements in polycentric
systems?

As an answer to this question, we shall design a quantitative analy-
sis of symmetry for molecules, which can not be treated as quasi-mono-
atomic systems. Consequently, this must be a theory of molecular in=-
variants. Since the symmetric coordination polyhedra are a new compo-



nent in comparison to the traditional atomic spectroscopy, to the nu-
clear shell and to the ligand field theory, this will exercise an in-
fluence on the character of molecular invariants as well as on the al-
gebra of coefficients.

With regard to the invariants there are now two different types.
At one hand there are still the reduced matrix elements of the Wigner-
Eckart theorem, Because these arise from the s,-a. and thus delocalized
molecular functions, they gain their significance only indirectly by
as second type of invariants localized at the edges, triangles etc. of
the polyhedral framework, These invariants involving several atomic
centres quite naturally refer to the neighbourhoods within the co-
ordination polyhedra (sections 4, 8, 11) and thus give way to the
ideas of coordination chemistry and the theory of chemical binding.

With respect to the theorems mediating the connections of both types
of invariants’we need a polyhedral supplement of the tensor algebra,
The familiar classes of coefficients in the Wigner~Racah algebra (3jm,
6j, 9 symbols, isoscalars, coefficients of reduction and fractional
parentage) are supplemented by classes with reference to the edges,
triangles and deformed +tetrahedra subtended by the atoms, The most
significant, new coefficients represent triangular relations within
the polyhedra, In analogy to the familiar isoscalars’they are called
polyhedral isoscalars, Principally the new definitons and the somewhat
delicate design of the graphic  symbols shall be kept as close as
possible to the existing Wigner-Racah algebra.

The question for molecular invariants can be formalized quite
generally in a basic concept. An arbitrary statement of the ligand
field theory may serve as an example, let us say the energy of the

1 2 .
state Aig(tzg) in an octahedral field:

E(iAig(tzzg)) =B, =8Dg + A + 10B + 5C (1.1)
On %he left we have a physical quantity Ph(y) depending on a set of
quantum numbers y, On the right there are several radial integrals
Int(z) likewise depending on quantum numbers z, In (1.1) these are in-
dicated by distinct letters, Seldom is it stressed that the factors -8,
1, 10, and 5 are not more or less occasional numbers but values of
functions of y and z and therefore can be enunciated by formulas con~
taining the sets y and 2z, Factors of this type will be called geometri-
cal factors through out, GEO(y,z) in this case. (1.1) now presents it=-
self as a special case of basic relations:

Ph(y) = ; GEO(y,2) +Int(z) (1.2)



Another example is the square of a vibrational frequency of a molecule
expressed by the force constants with respect to neighbouring atoms.
This relation is determined by geometrical factors, too.

Often - especially for symmetrical structures - the geometrical
factors are the only accessible, precise data and therefore the most
interesting part of the theory. In semi~empirical theories (like
Hlickel-MO), the integrals Int(z) are treated as parameters. For the
fitting of these parameters, the inversion ‘

Int(z) = ¥ GEO(y,z)-Ph(y) (1.3)
y

is useful.

The task now is to design a systematic theory of the quantities
Int(z) at one hand and the geometrical factors at the other, as has
been elaborated for atoms and nuclei,

The physical quantities naturally do not depend on the choice of
coordinate axes and the numbering of atoms; they are invariants. The
generation of a minimum number of invariants Int(z) demands the con~
sideration of symmetry. Since (1.2) is a relation between invariants
of different type, there can occur nested relations of this kind. An
example is a many-particle matrix element, which, in a first step,is
expressed by the one-particle MO-integrals (respectively their invar-
iants). In a second step, the latter are expressed by the multi-centre
integrals of the atomic functions (respectively their invariants).

The geometrical factors, being invariants too, have to be reduced
to the coefficients of the Wigner-Racah algebra of the relevant point
group and its polycentric supplement, The generalization of the
Wigner-Racah algebra to point groups has been given by Griffith [5]
with restriction to simply reducible groups containing ambivalent
classes., Even more recent books in this field cling to this restric-
tion [6, 7, 8] . An exception is the introduction to the energy dia-
grams published by K8nig and Kremer [9] and preceeding papers by the
same authors, Since our results shall equally and immediately apply
to systems like Co(N02)6 (group Th), Tag-clusters with spin-orbit
coupling (group Oh)’ Pt(CN)4 in an magnetic field (group C4h), and
BIZHEZ (icosahedral group), we include the non-simply-reducible point
groups with non-ambivalent classes from the beginning,

Because of the heterogeneous notations in the literature, we
recapitulate the Wigner-Racah algebra of non-simply-reducible point
groups with non-ambivalent classes in section 2. The price for in-
cluding these groups is the appearence of several multiplicity in-
dices, which may obscure the esthetic clarity of the theorems.
Therefore it is advisable to omit all multiplicity indices and their



related sums from time to time, Mostly these indices take only one
value and are included only as a precaution for the few cases of
maltiplieity 2 or 3, After this recapitulation, the principal concepts
refering to point group symmetry only are built up in the sections 3
to 11, In doing so, the preliminary studies [10, 11] are resumed. The
rest of this treatise is new matter. The sections from 12 onwards
contain more detailed results, which depend more on special choices
concerning multiplicities and orbital systems.

Since many-electron matrix elements are reduced to one- or two-
electron matrix elements by geometric relations, we are mainly con=-
cerned with the latter, Because of the deloecalization of the MOs, the
manyelectron systems in the MO scheme show no polycentric peculiarities
compared to ligand field theory. So they are dealt with only in short
in section 19. On the contrary, the VB scheme, though less usual,
leads to some general ideas in our context (section 20). The main sub=-
ject of the further development presumably is the theory of the po-
lycentric coefficients of fractional parentage (the generalization of
the familiar coefficients). For this purpose, one needs the unitary
group or gquasi-spin apprdach adopted by Bacah for the many-particle
theory.

Another direction of improvement is sketched in section 21. It is
the application of the present symmetry-analysis on erystals, i.e. the
introduetion of space groups into our considerations., This application
offers itself in particular for calculations using atomic or Wamnier
functions (for instance tight-binding or OPW methods) and for normal
vibrations of crystals, In the case of symmorphic space-groups this
introduction causes no difficulties;but for the non-symmorphic groups
it is hampered by the deficient elaboration of the Wigner-Bacah al-~
gebra of these groups.

Another aspect, the application to the molecular normal vibrations,
has been demonstrated in the paper {1Z] ., Since no principal new con-
cepts could be expected to appear, it has not been taken up again
here., The same applies to the more complicated adiabatic and rela-
tivistic effects,

In the foreword of his book [13] s Chesnut has termed group theory
as organized common sense. Organizing in this context also means the
tabulation or the programming of the group-theoretical coefficients,
Just as they now are available for the rotation group [14] and by a
recent book [75] for the point groups. Not until the newly defined
coefficients, especially the polyhedral isoscalars, are available nu-
merically, the symmetry-analysis lined out here will take full effect.,



2. Summary of the Wigner-Racah algebra of non-simply-reducible

point groups with non-ambivalent classes

In the following,we assume as known the results of the monocentric
group theory of atoms and molecules presented, let us say, in the books
of Edmonds [15] and Griffith [5]. Some parts of the group theory con-
cerning the two-particle interactions and coefficients of fractional
parentage (CFP) and missing in Griffith’s book have been described in
the papers [16, 17] and this concise summary is in part identical with

the appendix of [17}, where more references are given. A detailed study
of the NSR groups has been made by Butler (18}, but it is more ge-
neral than necessary for point groups. We further refer to the lectures
given by Butler and Piepho at the NATO Advanced Study Institute on re-
cent advances in group theory [19, 20},

2.1. Representationsg

We consider a molecule, complex, or cluster with a symmetry group
G, optionally a point group, a double point group,or the direct pro-
duct of a point group and the spin group SU(2). The classes of G are
denoted by C and its elements by g, g' etc. The latter are identified
with the symmetry operations in the configuration space acting on vec=~
tors, triangles and other objects in space, for instance:

?= gt (2.1)

2>

The irreducible representations of G are denoted by a, b, ¢ etc. (or
a(@), b(G), +.. if a distinction is necessary) with the unitary repre-
sentation matrices D (g), and the matrix elements D2 (g)

%(g)p%(e) = D%(gd) or Fo,(8)D (¢) = D (gg) (2.2)
' n
p2(g)*= p*(g) 1= p2(g™t) or
&)t = P2 (e)F - D), = piae™) (2.3)
These obey the orthogonality relation:
%Da (g)qu )"‘= ordG 2 %ab°mpng (2.4)

The representation contragredient to a is denoted by at and defined by
+ * -
{8 (g) = [02 (&)] = 02, (™D, (2.5)
The reducible finite dimensional representations of G are denoted by
GA(or GA(G)) with a discriminating index A and the representation by uni-

tary operators, acting on a Hilbert space, by U(g). The operators U(g) are
defined in the space representation by

D =&lute) 9. (2.6)



2.2. Characters

The characters are defined as usual for irreducible and reducible re-
presentations:

250 = 35, *(g) = gc}i‘i<g> (2.7)
From (2.4) follows the orthogonality relation

- ¥
ordG laordc-f(c)f(c) = 84 (2.8)

where C are the classes of G and ordC their order, i.e. the number of
elements in C, A further orthogonality relation is:

_i ¥ a,d -1
ord¢ gf(c)l (¢) = ord6™ 8,y (2.9)
The criterion :
n(x,a) = ordG"igordc-f(c)’ﬁcX(c) (2.10)
gives the multiplicity in the decomposition, i.e.,the direct sum
& = S n(x,2)a ' (2.11)
The relation a
ordG'igordmf(c)f(c)Ze(c) = n(abc) (2.12)

likewise gives the multiplicity in the decompositions of the direct
products:

axb = n(abe)e”, axc = %n(abc)b'* , and bxc = yn(abc)a* (2.13)
¢ a

But n(abec) also determines the multiplicity of the identical represen=
tation in the triple product a xbxec, If n(abe)> 41 (abe) is called a
triad, In order to discriminate triads from other triples of represen-
tation% one defines the symbol:

5(abe) = {1 if n(abe) 24

0 if n(abe) =0 (2.14)

In the case of n{abc}2 2,we need a multiplicity index in the decompo-
sitions (2.13), © let us say, and shall call (abet) a triad too. Be-
cause of (2.8) we have for all groups and all irreducible representa-
tions a: n(aa®™t) = 1,
Concerning the equivalence of a representation a to a¥ or to a real
representation a,,there are three cases:
a) a~a+~ar , b) a £ at , c) a~a++ar
These cases are distinguished by the criterion:
—pe -{ § B
gE in case ¢

In the cases a) and c)’the characters of the representations are real.

(2.15)



In the tables of Xoster e.a. [21],the cases are specified for each re-
presentation.
Finallx all point groups are simple phase groups, which satisfy:

%Z (8%) = %,{ ()’ (2.16)

This means that the identical representation may be contained only in
the totally symmetric or the totally anti-symmetric part of the direct
triple product ax a xa, The significance of this property will show up
in section 2.4,

2.3, Bases

The bases carrying the representation a are denoted by am (and a dis=-
criminating multiplicity index a if necessary), If the basis is realized
by Hilbert space vectors, we use Diracs bra-ket notation through out:

U(g) {eosamd= Ilezm(g)-'...an> (2.17)

In the case of finite~dimensiomal vector spaces, except the tree-dimen-
sional configuration space, we use '...am) in the same sense.

The basis contragredient to [a@}is denoted by la+ﬁ>having the same
transformation properties as the bras:

?‘am) (a.m'?} {a m'—’> or (Flam) = (a.mIF)* (a+m‘F)
Since a and a may be inequivalent, we can not relate am and a *m in
general, Moreover, such a relation is of marginal interest, because the
final invariant expressions do not contain special bases anymore. But
the basis a**m has the same transformational property as am and there-
fore is proportional to the latter, A detailed consideration leads to

= {a}-am (2.18)

with a phase factor{a}: 1 for vector andfa}= -1 for spinor represen-
tations [22]. The use of braces for this phase factor is Justified by
the relations (2.31) and (2,39). The representations of case a) are all
vector representations, those of case c¢) all spinor representations,
The complex representations of case t)can belong to either type.
We have to take into account (2,18), if we relabel representations:
am - b'm implies a'm- b*'m = {b}bm
and atm= bm  implies am — b***m ={b}b+m
For all point groups, the following quasi-ambivalence condition [19]
holds (cf.also eqg.(12)of [20]):
{a}{b}{p} =1 if (abc) is a triad, i.e. n(abe)>1 (2.19)

Since there is a strict correspondence of co~ and contragredient
bases in all sums, we can adopt Einsteins convention: If the same in-



dex occurs twice, as a co- and a contragredient index, the the sum is
to be taken over the range of this index:

z(oooa+oo.)(oooaoao) = Z(cooa+ooo)(cooaoo') (2.20)
m

eooell 440 eooelllone eoelll o0 eoellone

2.4. 3jm symbols

The matrix
abe _ -3 a, b c
M, par = OTI¢ 21 (8) g (£) Dy () (2.21)

projects out the identical representation from the direct triple pro-
duct axbxc., Because of the relation M= M, the eigenvalues of M are
zero and one, The number of the eigenvectors belonging to 1 is given
by n(abe) according to (2.12)., The components of these eigenvectors
(numbered by the multiplicity index o) are the 3jm symbols of the group
Gs

-ic.a b c , (abcyo _ cabeyo
ord@ ngp(g)qu(g)Dnr(g) (1m)" = (ogr) (2.22)
For convenience the eigenvectors are chosen orthogonal:
b b
LR G = 8(0y) (2.23)

Since a matrix can be represented in terms of its eigenvectors and
-values, another definition of the 3Jm symbols is

-Iv a b c abe,o¥ abeyo
ordG ngp(g)qu(g)Dnr(g) =§(1m) “(par) > (2.24)
The basic transformational property of the 3jm symbols is
a b c abcyo _ ,abeyo
T08 (£)Dh (8)05,(8) (pm)® = (50m)° (2.25)

from which other forms can be derived by (2.2). Because of the choice
(2.23» the orthogonality relations read:

Z(:TE;)G*(:TE%)T = 8(c,d)6(0,7)8(n,p)/dime (2.26)
z::ﬁimc(izg)c*(;z;)c = 8(1,p)8(n,q) . (2.27)
ocn

In {18] Butler shows, that (2,19) allows the choice of the following
simple conjugation property:
(abc)o*

1lmn

o+ F

=(¢2oe (2.28)
Because of the simple phase condition (2.16), all 3jm symbols can be
arranged according to the following symmetry rules, They are symmetric
with respect to cyclic permutations '

Go)? = (pe2)° = (F)° (2.29)

and need a phase factor f{abco} =*1 for odd permutations:
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(32€)0 —fabeo} (222)° = fabeo} (32D)° = fabeo}(S02)° (2.30)

In the case of three different representations a, b, c¢,the choice of
these phase factors is free. The factors {aaaog are fixed, the factos
{aacc} fixed in part, For SR groups they can be split up into phases
associated to the individual representations (cf.eq.(7) of [20]):
fabe} = (-1)*+(-1)P+(-1)°
The phase factors of (2,18) are special cases:
ja} = faa*1} (2.31)
From (2,28), (2.18) and (2,19) we get the derived conjugation pro-
perty!
b x tpt
(a. C )G = {}(ja_' C)G {a;{bZ(i*b C)G (2.32)
If the triad contains the identical representation 1, we have the
special case:

(zig)s = 6(5:,1)6(a,c+)6(k,l)/Vaima‘ (2.3%)
In terms of the 3jm symbols, the coupling of kets is given by
|(ab)ocp) = 2c}Vdich(: E ; -‘ad)-lbﬁ> (2.34)

The Clebsch-Gordan coefficients in Butler's "sensible” choice {18]
therefore are :

<em,bn | (ab)oepy= §cjVaime(y E )’

But there may be introduced an arbitrary phase factor K(abco):
<?m,bn’(ab)oc§> = K(abco)-(?m,bn'(ab)ocp)s

We therefore shall use only the explicit formula (2.34),

2.5, 6 symbols

The 6j symbols are the invariants defined by:
abe _ waetfia, abftig, dtecyy, at
{defgasyé B z(il ) (njm ¥ (n lk) ( J k) (2.35)

Their symmetries follow from (2.29/30):
‘abe ,{cab} _ bca}
def{apys ~lfdefyapd ~ lefdipyad !
b
§2§}a876 ={d}{e}{f}{afe+agfdf+b5}{d+cey}{abcéf{3+§+e§»aYB& (2.37)
and its combinations with (2 36).

abe atotr _q elec
def Japys = {d+b ¢ }676a = a+e+c§yéa6 {a b+f+}ﬁa67(2‘38)

Because of (2.33) the 63 symbol containing the identical representation

(2,36)

reduces tor

{g‘;g}nyé = §(y,8)5(a,e)5(b*,a){abes ]/ aima-alms (2.39)
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This fermula justifies the choice of curly brackets for the phase
factors in (2.30) and (2.18).
The essential relation of the 6j symbols is:
+
z@f@“«ﬁ?ﬁ 8. (d'ee) T, <i§§> a<c,g>a<k,p>dimc'i-{32;}%?5 (2.40)
This implies the definition (2,35) as a special case,
From (2,40) further relations can be derived by the help of (2.26/27):

ae f dbf+ B. a*ec Y _ w§abc abe
2 o) lggm V1))’ = %{def}asyé(ljk) (2.41)
and the recoupling equation:
ae*fia, dbf*\p _ . (abe 6, d*ecyy¥
Z(11 m) (ngm ) %%Edlmc def/aByd 13k) 1k) (2.42)

For the elimination of the complex conjugation on the right,one has to

take into account (2,32).
The relations containing several 6j symbols are as follows:

Orthogonality: .
b b ;
2::ﬁ1mf{geg 2iy5 1o} aor = 5(0,8)5(1,0)8(8,7) /dime (2.43)

Racah s back-coupllng rule:
+ + 7 bac abe
%%%dimg{e}{dbf B}{abcé}{adg n}{deg}snyé {£ef }aﬁsn def}aﬁyé (2.44)

Biedenharn-Elliott sum rule:

aya,a B8,8,8
1723 271 :
Z{aiazazﬂ{b oo } { ’ } = 5 _4afdinma
Y 2P5/0y%p05Y1C5CoCy B5BoByy  2aBY
b o2 [cyb,a c.b.a (2.45)
171 373
+ fab c,atfab c Bliab,c yf{ } { } { }

TR EEE 3 by oy susuplbgbiaz) 6 japyalbyeyall 6y oy by
Special cases of these relations are the sum rules over one 6j symbol:

Zdimcﬁﬁ%}as” = 6(a,3)6(a€fu) (2.46)

{?bcy}dimc{%gg aByy = 85(£,1)8(a,1)8(B,1)Vdimardimb (2.47)

2.6, The 9j symbols
We now collect the properties of the 9j symbols. They are defined

by
R RN R LR UCE U EEE SIS REEHE R

g h ify £ Tl mbmmh mmi'mi(248)
6en
and are invariant to even permutations of rows and columns. The multi-
plicity indices follow their triads in an obvious way:
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abdbcla c ala d e £18

defp=4de fdp =4gh i}y ete. (2.49)
ghijy higly abc)a

S e n enod 5 en

In the case of odd permutations of rows or columns,again,the phase
factors appear:

ab a b
{d e f;B {abca}{defsgighly}{o £ eis {adg&}{behs}{cflni{g 2
v 8 e

cla
ity (2.50)
% hi £)B

€1 ne 7
The conjugation is related to tho reflection about the main diagonal:
aibic: a abecld (adgld
dlelf rp = 4d e £/p = 4b e hre (2.51)
g'htiYy ghi)y c f i)y
demn den a By

As all nj symbols,the 9J symbols containing the identical representa-
tion reduce to zero or a simpler symbol:

abi)a aa'ly1
def B = 8(a, i)&(n,i)&(a , D)8t ,1){d e f‘}s (2.52)
ghi gh £t Y

€ n el

with the special case:

+
a a’l J1 (2.53)
+ + def
{g e §+§$ = (1/V@Tma-ain?) {n} {a nee} fnt*er s L
5el
There is an analogue of eq.(2.40) for the 9j symbol, from which we
can derive the analogues of (2,41 and 42), The latter is the useful
rule of de-Shalit:
def Bigh i y?adg\6,b eh ¢
CRERUCEE R TR S
a b ¢
= E dimce4d e £
anc g hijy
S emn
The orthogonality relation of the 9) symbols reads:
a b ecla (ab cla¥
; J__dimcedimf. {d e £rBe4d e f}s/
et apn gh i)y (g h) i)y :
6 7 6, E:/ n (2055)
= 8(h,n)8(g,£)6(5,8)8(e,&)8(y,y)/ding-dimh

£ G mn,)“(m g, )"

}a x (2:54)

Instead of (2.48),the 9) symbol can be defined in terms of 6) sym~

bols: {a b e

a b d hi
g g fi E:Zgikﬁdimk ﬁ k g+}cs¢a{k }5076 % *r kzrony (2.56)

Using the orthogonality relation of the 6 symbols, oné derives from
(2.,56) the following sum rule:
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3 Shuene = 0935 3 Eanrgff Bobfacny (27

}

2.7. Tensor operators

> dimece %

can

oln A ®
m B oo
3 kMO

By definition,a tensor operator is a set of operators having the
transformation property:

U(g)T;‘U(g)" ZD (g)T (2.58)

The matrix elements of these sets of operators can be factorized accor~
ding to the Wigner-Eckart theorem (WET):

Qtp|ra)sa> = E(f)fllTalléd>e (g ik (2.59)

From (2.30 and 3%2) follows the relation of the reduced matrix elements
of T and of their adjoint operators (T?)*:

Gaf(r)*lned, = f£} faaste} Gellr®llsad, (2.60)
In consequence of (2.34), the coupling of two operators is given by
wgc(ab) {C}Vdimc-gg(; E ; ® U;-VE (2.61)

The reduced matrix elements of the set W can be expressed by those of
its constituents:

<&'>d“Wac(ab)nee>B
{d}ﬁm-;{ad folfebf x}{:gg fdwm<z‘>d|1Ua‘||nf>GQ)f“vbnee)T (2.62)

If the space of the kets is a direct product space,and if the operators
v? and V act on either factor space only, the reduced matrix elements
of W*®(ab) can be split up into the reduced matrix elements of U? and
Vb with respect to their factor spaces., Because of (2.34» the states

of H @ H, are

f(a,a )5dr>1@2_{d}\[d_ufz<r a r G0 Jayr, M la,r,p?,  (2.63)

and the factorization is given by;

<Kdid2)6d”Wa°(ab)"(eie2)5§>és2 idgd 5 (2.64)
= Vdind-dimc-aime+3_da b o par @, [u3]e, >l @ [v0]e
o eieze €
TP

2.8, Chains of groups

We now collect the interrelations of functions, coefficients,and redu-
ced matrix elements classified according to a group G and its subgroup
G. The most important case is that of the rotation group and a point
group.,
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In general,a representation a of @ decomposes into a direct sum of
representations a of G,

d(d) = z n(d,a)a(e) , (2.65)
according to the multiplicity rules
al, = . " a’ °
n(d,a) éV%‘@omc ,f(cf/z (c) (2.66)

The basis functions of a(¢) are adapted to G by the unitary transfor-
mation!/

'a’aapa> = Z{a’p’a'alaapa) ‘a"p’a> (2.67)
la’p’a> = %(a’aapa'a/pbo 'a’aapa> (2.68)

A definition of the adaption coefficients, which is independent of the
special basis, can be given in analogy to (2,22):

ordG'igs D;!n(g)D:q(gf‘ = dima'i§<a{m'a(aap><a’aaqlaﬂ'1>( 2.69)

The factor dima"i comes from a different normalization:
¥ aapfdny (dm|debg) = 5(a,p)6(2,b)6(p,a) (2.70)
S~ {dm|enapy {daap|dny = &(m,n) (2,71)
aa

A1l terms classified according to the representations and bases of ¢
can be adapted to the subgroup G by this transformation., A case of
special interest is that of the 3jm symbols:

d v che o
a a' b’ e\e /4 ! { ]
(a % YWWo=33 o3 <al Jaaap) Em | vEbo><{én | dyer> (2.72)
par
Applying the WET with respect to G to the left hand side,we get:
d J
a' v’ d\e I/ :
: a'v/ die
b
2RI =Tmslepy] GO D" (2.73)
abeln :
par

This is nothing but Racah’/s factorization lemma, which implicitely
defines the isoscalar factors (or short isoscalars):

o/ b cfie dbche [ Lt abeynt
Isja E v = Z(Qmm) <e(1la’aa1><bm!b6bq><cn'cycr>( ) (2.74)
abein

bar

The isoscalars are invariant to even permutations, 0dd permutations

yield the phase factors:
oV de a’c’/the
aBy| = {éﬂc’s}{abcn}-ls(a y B) (2.75)
a b cin ac bfn

Is

The complex conjugation property is:

M e e’ v é X
18 §+%+Z+ ) =i g.% Z ) (2.76)
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The orthogonality relations of the isoscalar factors are:

2 v d\ X (&Y die
E:Is
aaf

« By -Is «B o 5(c’d)6(8,e)6(y,0)dime/dimc’ (2.77)

abe abeln
, dﬂcé*‘dﬂ&é
g dimc-Is{a B y| *Islo 1t y| = &(a,s)8(b,t)5(a,0)5(B,t)6(e,n) dime
ye! abecle s tecin (2.78)

The isoscalar factor containing the identical representation of G’is

very simple: ;_/,/ 44

ab 1ie
Is{a B = 6(a+,b06(a,5)6(a sb)8(e, i)é(n,i)Vd1ma7dima’
abifn (2.79)

Further, there is the following sum rule:
' d*e
S Ydima-Is
aa

al
«ay
a a'l
If we invert (2.73) more carefully by using (2.26), we get a more ge-
neral relation than (2,74):

- 5(c’,i’)&(y,i)a(e,i)v’di—ma’ (2.80)

abC) <a’llaaap> <bn'b[3bq><cn’cycr>(;‘;g)n* o (2.81)
a'
= 6(c,d)6(r,s)-dimc-i'1s « By £
ab c n

From the WET and (2. 73» we get the relation between the reduced ma-
trix elements with respect to G and th0se with respect to its subgroup

& <éaa"TbBbﬂcy§> =y Is{a B y) - GllT® Hé} (2.82)

where the operators, of course, are adapted by:

{
L RN L | (2.83)

The combination of the WET aﬁd group chains has been discussed in

{18, 23], The idea of the isoscalar factor, stimulating the defini-

tion of the polyhedral isoscalar in section 6, first came to the au-

thors knowledge by an earlier paper [24], where the isoscalars are

termed V-coefficients of the rotation-point group.

2.9. Product groups and double tensors

In the opening of section 2.1.,we allowed the symmetry group to
be a product group. Since the irreducible representations of a pro-
duct group are the direct products of the irreducible representations
of the single groups, we have a general doubling of the quantum num-
bers [5], section 3 2:

pp qd(gg') = D (8" Dp’d(g) (2.84)

with ge G, gQSG, and gg'¢ Gxd, Consequently the same applies to the
characters and the 3jm symbols:
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g gajgg’) -7 f'ig’) , (2.85)
a AN
(gg ag o) = (g2 (5eq , (2.86)

and further to all nj symbols. As concernes the states and operators
the doubling applies, too, but in general not the factorization,., The
operators with the transformation property

U(gg)r2qu(gd)* = 3D p2 .8

(8€) 7250 (ee) T3 ()(e) - (2.87)

are termed double tensor operators., The WET 1n this case reads:
(nffpp|Taa]5ddrr> %(nffllTaa"&dd> (g 3 g) (ﬁﬁ 3 r)E (2.88)

States and operators allowing a factorization are the (one~par=-
ticle) spin orbitals and the summands of the spin-orbit coupling ope~
rator, On the contrary, the many-elecron states of the MS-coupling and
the occupation operators of spin orbitals (cf. section 19) can not be
factorized because of the antisymmetrization involved. Consequently
the coefficients of fractional parentage (cf. section 19) allow no
factorization, too.

The possible factorization is also important to the symmorphic
space groups, since they are direct products of the point and trans~
lation groups (cf. section 21),

2,10, The significance of reduced matrix elements
As mentioned in the introduction, the RMEs of one-centre one-parti-

cle matrix elements in essence are radial integrals, The same there-
fore applies to the semi-empirical parameters of the atomic spectro-
scopy and the ligand field theory even being defined without previous
knowlegde of group theory (cf. the introduction of [25]). In other
cases) the meaning of the RMEs is not so obvious and more indirect:

For compound operators we have the relations (2.62 and 64),

For many-particle states,the RMEs are traced back to the RMEs of
one~ and two-particle states by the technique of fractional parent-
age [26, 27). We come back to this subject in section 19 by a diffe~
rent approach,

The RMEs of the symmetry~adapted LCAO-functions have not been ana~-
lysed, so far, and are the main issue of this treaty (ef., section 5
and in a more general context section 20).
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3., Representations induceéd by polyhedral edges
This section closely follows {9, 11]. In the theory of molecules, the
first step towards quantitative considerations of symmetry is the for-

mation of symmetry-adapted (s.-a. in the following) linear combinationms,
especially molecular orbitals and symmetric coordinates, This is well
¥nown and done heuristically in simple cases or systematically by the
projection operator technique, The insertion of such symmetrized mole-
cular orbitals into molecular matrix-elements results in rather com-
plex expressions [28]. We therefore prefer another approach by study-
ing the symmetry-adaption ef arbitrary “objects™ defined with respect
to the vertices and edges of the polyhedra (and later on with respect
to the faces, too),

We consider molecules AmBnCp“‘ with a symmetry group G. This may
be optionally a point group, a double point group, or the direct product
of a point group and the spin group SU(2).

The positions of equivalent atoms A, B etc., which constitute a sym~
metric polyhedron, are indicated by the vectors T, i B etc, where i
and k give the numberlng within the equivalent sets. The distance vec~
tors ?’k—A 'Ak’ T k:g Bk' ﬁ;k=K;4§L etc. likewise form equivalent sets.
In order to simplify the notation and to allow differences of the
distance vectors again,we use beside the double 1nd1ces a simple num-
bering iik > S . The correspondence of § with Ai and A or of TI’ with
Ai and By 'can be expressed by a topological matrix T(ikr)' wh1ch dis-
apears,if not X +Bk¥€'-0. The value in the other case could be chosen
equal to one, but, becanse of the analogy with the 3jm symbols, it is
more appropriate to choose 1/VZTK§§7, where Z(ABU) is the number of
all triangles equivalent to K;+§i+ﬁ;=0. The analogy mentioned will be
treated in section 6, We sum up the deflnltlon-

N 1/V'_(_—7 ior z_x’l+Bk+U =0 (5.1)
or A +By +U #0

Now the correspondence 7. ik éﬁ? can be expressed as follows:

ZVZ 5°r( )-U (3.2)

TLater on we shall use correspondences of this type also for other num-
bered objects in the polyhedral framework.
The simple numbering allows to treat the equivalent sets S on an
equal footing with the sets A of atomic positions., We thus can write
in a unified manner the (in general reducible) representation & of
the symmetry group G,induced by the equivalent set S:
g5 = ¥ o (8)5 (%.3)

According to the character formula (2.10) this representation &3 car
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be decomposed into a direct sum (2.11). For finite and compact groups,
this decomposition is guaranteed by Maschke's theorem f29}. Moreover,
it is proven that the decomposition is achieved by a unitary transfor-
mation [30]:

§<Saarrs‘;)o§k<g)<s‘;!ssbs) = 5(2,b)8(x,8)Do(8)  (3.4)
or Eoik(g)(§zl8aas) = ZDgs(g)(§;tSaar) (3.5)
T
with E(Saarl's"i)(g;'sgbs) = 8(a,b)5(a,8)8(r,s) (3.6)
and §::(§:|Saar)(8aar[§;) = 6(i,k), (3.7)
aar

where « and B are the multiplicity indices. On analogy of (2.69)’the
transformation coefficients also can be defined by:

ordG'%éE%cEk(g)Dis(g5*= dima'ig(gz!Saar)(Saas‘§;) (%.8)

This relation is derived from (3.5) by (3.7) and (2.4). The notation
of the transformation matrix is chosen following Dirac s bra~ket for-
malism. The analogy is twofold. At first (§Z‘Saap) is analogous to
éumlaaa§> In the same way as we adapt functions to the group G by
(2.67), we can adapt s-functions, s(P)= <§'§>,centered a4t the atomic po-
sitions A by:

Flsbasp) = §<F1X2!5>(K;'Aaap) (3.9)
This is the formation of s.=-a. LCAO~MOs by linear combination. Quoting
Cotton [31],we therefore call the coefficients (K;'Aaap) SALC coeffi-
cients (i.e, coefficients of symmetry-adapted linear combinations).
More details concerning this aspect are elaborated in section 5. We
can invert (3.9) by (3.7):

(L] |= Z@l sAcapy(Aaap|L;) (3.10)

which, of course, is analogous to (2,68).

But there is another interpretation of (3.10). (r-A '@- s(r-Ai)
may be regarded as a function of the discrete variable A . (3.10) then
gives an expansion of these functions into (Aaap'A ) with expansion
coefficients (?'sAaaj} according to (3,9). Thus the SALC coefficients
turn out to be s.~a, functions of the positioms Ai' From this point
of view they are analogous to s.-a, Hilbbert space functions rlgap .
Because this second amalogy is very important and fruitful, we work
it out in six parallel steps:
1a) Consider the Euclidean_spgff R3._>
1b) Consider the set A = {Ai, A2""AZ(A)}’ where Z(A) is the number

of equivalent positions in A,
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2a) Define the functions cp(?) &lo on Rz i.€. e R3

2b) Define the functions G(Z, 1= (A [a) on 4, i.e. A eat

3a) The kets [¢) subtend a Hllbert space H(R ), <r(¢> being the space
representation of |o).

3b) The kets ’G) subtend a finite, unitary space U(A), (A |G) being
the space representation of ‘G)

4a) In H(R3) there are s.,-a. functions <?[¢a§> transforming according
to (2.17).

4b) In U(A) there are s.,-a, functions (KZlAaap) transforming according
to

7] [acap) = I0%,(e) (T [40aq) (3.11)

Because of (3.3) the transformation property (3.11) is identical with

(3.5). This means, that the s,-a, functions in U(A) are just the SALC

coefficients, if the appropriate normalization is chosen.

5a) The s.=-a, functions <?1¢ap> are orthogonal and complete, if

Z(flmap><map!?’>= 5(2,% (3.12)

f@@l“}é’l agha’r = 6(a,d)8(9,9)8(p,1) (3.13)
5b) The s.=-a., functions (Aianap) are alreedy orthogonal and complete
because of (3.6/7).
6a) Because of (3, 12/13)7we can expand every function <r'n>»€H(R )

according to
&l = ;(waplnxrha@ (3.14)
pap
with the expansion coefficients:

pap|n) = /@ap(?ﬁmcﬁr (3.15)

6b) Because of (3.6/7), we can expand every function (K;'G)G u(a)
according to
(2} [6) = S—(acap|e)(E] |acap) (3.16)
aap
with the expansion coefficients:
(Aqap'G) = %(Aaaplﬂi)(K;'G) . (3.17)

This expansion theorem, which is based on (3.6/7) is the main result
of our discussion, Bq. (3.10), which was our starting point, is now

+)Here a note on our phraseology may be in order, In a puristic way
of speaking,sidﬂ is no function, but a value of the function sin, In
the same sense G(K;) or (K;lG) is no function (or vector in U(4)), but
a value of the function(oracomponent of the vector) |G). But to sim=
plify matters,we keep calling (A ‘G) a vector, sinx a function, and
ajy @ matrix.,
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a special case of (3.16). The symmetry-adaption (3.9) is a special
case of (3.17). Therefore in general (AaaplG) may be interpreted as
the s,=-a, version of (A 'G)

The functions (AitG)E'U(A) often result from the ordinary function
of H(R ) by inserting edge vectors, i.e. r-A . A case of special in~-
terest are the spherical harmonics

&y = ity (F/r) , (3.18)
where the phase is chosen in accordance to section 2.3, i.e.<f11+m>=
<im‘iﬁx and the s,-a., spherical harmonics:

(Z|1aapy = I dn|laapF|1n> (3.19)

If we insert the argument K; into these functioms, (3%.16/17) yield:

<§;llaaﬁ> = 0 for n(4,2) = 0O, (3.20)

otherwise;
<A ‘laap> é:; (% fABap)oc(ABa la) (3.21)
c(ABa la) = ;(AﬁaplAi)<T1]laaﬁ> (no 1) (3.22)

At the first sight,this important result is somewhat surprising. As
functions over R3 there are infinitely many, linearly independent sphe-
rical harmonics, but as functions over the set A the most of them are
linearly dependent. This results from the special directions enforced
upon the edge vectors by the symmetry, The expansion coefficients
(3.22) do not depend on the numbering of edges and the cheice of coor=
dinate axes. They are a property of the polyhedral framework. The ex=-
pansion (3.21) has been used ir [32] to expand the spherical harmonics
of intergral formulae. A table of the coefficients for a tetrahedral
molecule is alsovgiven there (cf. also table 26),

If the representation a is contained only once in 6% (3.21) pro=-
vides us with a simple tool to calculate the SALC coefficients. We
only have to insert K; into a s.~a., Spherical harmonic tabulated in
[21] and get a SALC coefficient up to a normalization factor. This me-
thod has first been used in [10]. If the multiplicity exceeds one, pro=
blems of linear independence and orthogonality arise and the coeffici-
ents are determined only up to a unitary transformation:

(K;anap) = %uégo(KE‘ABap) (%.23)

For each set A and each irreducible representation a,a new choice has
to be made, These problems are settled systematically in section 12,
where also a uniform choice of SALC coefficients will be proposed for
all edges of all molecules sharing one symmetry group. In the same
section the calculation of the expansion ceefficients (3.22) is redu-
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ced to a smaller class of coefficients.

Because of the one-to-one correspondence z, 19 ﬁ% 453 according to
(342), every function f(Al,Bk) can be regarded as well as a function
of the related U .

A B = & VIR e (i) 2(Ty) = £(T,) (3.24)

If the funtions considered depend on the difference K, --Bk only, the
special case Bk Ai makes no trouble. The edge vector ﬁ?ls simply equal
to the zero vector., This natural point of view has been adopted in the
papers [10, 12, 32]. But if the functions depend on Ai and Bk separate~
ly, we need a more sophisticated treatment of the case Bk—A » We have
to discriminate the zero edge vectors A -A _O according to their po-
sition (i.e, with respect to set A and number 1), since the functions
f(aﬂ) do depend on A and i.

This new interpretation is consistent with the following correspon-
dence of edge vectors between atoms, i.e. T, =K;-§;, and of vectors

ik
centred in the origin, These vectors are defined byr

-3/ —-\ —p .
Six = Wyhy + BBy (3.25)
An incommensurable choice of the coefficients By guarantees the a
one=-to-one mapping, i.e, 1k¢T1m and Sik¢sk espe01ally. Because of
this mapping g, ik 9-Slk,all functions of Sik can be regarded as functions
of S ik* Especially holds:

(5 Isaep ) = (5} ls aap) (3 26)
In the case of zero edge vectors wg,have 6 piAi+p2Ai—(pi+p2)Ai,
which yields the reasonable correspondence‘3 a-K'. By (3. 18),the sSym=
metry-adaption with respect of arbitrary polyhedral edges is reduced
to the symmetry~adaption with respect to vectors in the centre of sym-
metry. Correspondences of this type will prove to be useful also for
objects related to more than two centres.
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4, Bicentric matrices
4,1, Molecular integrals

The central theorem of the gquantitative group theory is that of
Wigner and Eckart. It applies to matrix elements of s.-a. functions
and tensor operators refering to the same centre of symmetry, On the
contrary, all calculations of molecules starting from localized orbi=-
tales at the atomic positions lead to polycentric matrix elements,
The following theorem applies to bicentric matrix elements of tensor
operators and includes the WET as a special case,

We proceed from an arbitrary set of s.-a, functions of species a:

95(F) = Flyap), (4.1)
i,e, with the tranformational property according to (2.6/17):
CFlute) {van) = L™ F|par) = D05 (e)Eloaed> (4.2)

By translation to the different atomic positions,we generate the
orbitals;

(Z|aigapy = {7-L, |yap) (4.3)
As usual in quantum chemistry [33],the position is not indicated by
a vector, but the set A and the number i are treated as additional
quantum numbers, The special case of s-orbitals has already been men-
tioned in (3.9).

The tensor operators are defined by (2.58)., In what follows, the ope~
rators refer to the centre of symmetry or are invariant under transla-
tions, as the operators of momentum and kinetic energy. The general case
of shifted operators is treated separately in section 8, The main exam=-
ple of this case are the potential operators. But we stress that s.-a.
sums,like V = Z& f(,FLK;|),are allowed for, because the entire sum re-
fers to the centre of symmetry. The difference between these sums
and the invariant operators does not matter in the present discussion,
but will give rise to the distinction of proper and improper bicentric
matrix elements later on,

After these preliminaries,we state the factorization theorem for
the bicentric matrix elements:

ip am) Ty {Bkgy bp)

ilmC dsn, ,a™d d\6,d%c eln, =
= Ené(“’aa“T IBoyD)gens (5 » (G n =) " (Syytseer)

(4.4)

with §1k= Kzéﬁi. If we skip all discriminating multiplicity indices,
the geometric structure contrasts better:

Giamin on = F(kalnfpn), @ DS Fetsylsen)  (45)
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The invariants (AmaaHTcumeb)ggg,defined by (4.4) are independent of
the numbering of atoms and the choice of axes, In general they depend
on the lengths A, B, and S.

Taking into account (3.2),(4.4) can be given another form, which at
the first sight looks more complicated. But it proves to be useful for
the further calculations, because the topological matrix connecting
Kz, ﬁ&, and §; leads to important, geometric results.

<Ai¢aam'T§,Bk¢bb§> (4.6)
_ mC dén, a™ d\6,d%c e+n_ =-ABS -
= gn;g(AWaa"T IBoyb)gen (a o o) (5 & o)1 T( TR VE(=ABS) (5] | seer)

The sum for S runs over all sets of equivalent edges and the topologi-
cal matrix selects the right one. This is necessary, since the verti-
ces of the tetrahedron or the octahedron are connected to each other
by inequivalent sets of edges.

Proof of (4.4): In the case of a translationally invariant operator,
the matrix elements are functions of the distance vectors §Zk only., In
the case of an operator related to the centre of symmetry, they are mo-
reover functions of A and B, because the triangles are specified defi-
nitely by A, B, and EZk‘ In both cases,they are functions of the edge
vectors §;k and therefore expandable according to theorem (3.16):

<@i¢aam'T§'Bk¢bbp> = g;(Seer}X)(Ezk’Seer) (4.7)

with the collective index X=(Ai¢aamTank¢bbp). According to (3.17) the
expansion coefficients are :

(Seerfx) = §(Seerlsik)<Aiq>aam‘T§Iqu)bbp>, (4.8)

where the sum for i, k is limited to K;-§L=§:k (i.e. the distance must
belong to set S). The coefficients (4.8) transform as a direet product
a*xb xc x et and thus can be factorized. For this purpose;we only have
to generalize the WET to a fourfold direct product:

+ +. _+
(Seer|x) = é?(maallm"llmbb)ggg-(; NGl (4.9)
- |

If we insert (4.9) into (4.7), the proof is complete.
From (4.8/9),we can isolate the invariant and express it by all ma-
trix elements:

(49,2l Boyb) 527

4,10
= {b}dimd-gg(: B+g;6(g §+;)n(Seer‘Sik)<hi¢aam'T§'Bk¢bbp> ( )

with the same limitation of i, k as in (4.8). We have used the phase
{e}: 1, because e must be a tensor representation even for double
point groups, i.e. including spin-orbitals in the matrix elements.
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If integral formulae are at hand, we can calculate the invariants by
(4.10). Since the wit of (4.4) is to express many matrix elements by
few invariants, this calculation is only efficient, if the 3jm symbols
and SATLC coefficients subsequently can be eliminated., In section 15
such a calculation is carried out., The invariants defined by (4.4) or
(4.10) shall be called BRM (bicentric, reduced matrix element).

Because of the relevance of scalar operators, we repeat this spe-
cial case of (4.4/6): s 4 '
Q19 am|T}Bko b = %::(A¢£HTMB¢bb)See-(; ; ;)5dime'1/2(§ik[Seer)

€e o . (4.11)

= & SV TEBS)7a5ad- (a0, alitiBoyn)g o (p 5 ) x(Tiye) (Sylseer)

ets1
See

where more precisely (A¢aaHTﬂB¢bb)gee = (A9 allTllBp,b) .
2, General bicentric matrices
The relevance of (4.11) goes far beyond the one-particle integrals.
By careful inspection of the proof of (4.4) we observe that the matrix
does not need to be an integral, It only has to transform in the right
way under the symmetry operations. Thus we can reshape (4.11) as a ge-

neral matrix theorem:

In the following i; are arbitrary vectors fixed in a molecular fra-~
mework (i.e. not necessarily distance vectors between atoms), If we
can show that a bicentric matrix M(i;)Ai¢aam,Bk¢bbp transforms accor=
ding to

~1=>

(g Xr)Ai¢aam,Bk¢bbp (4.12)

= 37 Efa(elol (0, ()T (e) MT) u g4 an, 31,05 /

then the bicentric matrix has the following factorization:
o F

M(i;)Ai¢aam,Bk¢bbp = %E;M(A¢aa"3¢bb)gee(; ; §>5dime'1/2<31klseer>(4.13)
The generalized BRM M(A¢aa"B¢bb)gee is a scalar function of the vectors
i; with respect to the symmetry group G. In the present context,q>a and
9, mean additional indices not affected by the symmetry operations.

Examples of such bicentrie matrices being no integrals are the in=-
verse overlap matrix of the atomic orbitals in a molecule, the one=-
particle density matrix in the AO basis, and the matrix of the vibra-
tional force constants with respect to the atomic elongations, The
last example has already been dealt with in {12}. The analogous gene-
ralization of (4.4) would be needed, if one considers anharmonic ef=
fects.

The inversion of (4.13) is:
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+
M(49,alBo,0)5, . = {b“dime'g(xan ; ;)6(S£er.Sik)M()—(;)AiQ)aam,Bkcpbbpu‘14)

Ag a first, simple example,wé now can determine the BRMs of the unit
matrix in the 40 basis: Bysp o Big bp = 5(4,B8)8(1,k)6(9,,9,)8,b)5(m,p)
The result is:

E(A¢aa"Bbe)gse
= 8(4,B)8(v,,,)5(2,2)6(5,0")6(e,1)8(,1)6(8,1)VZ(A) -dine

Since the product of two bicentric matrices is a bicentrie matric
again, the BRMs of the product matrix is determined by those of the
factors, But we postpone this caleculation, because we need some results
of section 6.

The integral and non-~integral, bicentric matrices often refer not

(4.15)

directly to the irreducible representations of the molecular symmetry
group G, but to the angular momentum basis, for the atomic orbitals
and elongations are at first given in this basis. We then are confron-
‘ ; ; = .
ted with matrices of the type M(Xr)Ainalama’Bknblbmb‘ Since the angu~-
lar momentum basis is in general reducible with respect to G, we first
have to adapt the basis according to (3.19) and then apply (4.13).
This yields the general structure of biecentric matrices in the angular
momentum basis:
)
M(X), . =2 M(An_1_aallBn 1.8b)S QA m_|1_aap >
Xr Alnalama,Bknblbmb TaEbSee a~a o b+b See /a at~a "Fa: (4.16)
a'b eyd ~-1/2, 7
+ &, gbpy §1.m X )®e«dime (S5, |seep,)
b bI b b> PoPpP, ik‘ e
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5. The matrix elements of s,~a, molecular orbitals

The s,-a. MOs can be built up from the A0s {Aig ap, > defined by (4.1/3).
As has been shown in [iO, ii],the complete set of symmetrized LCAOs
resulting from an equivalent set ]Ai@aapa:>is given by:

|(aee,p,2)v0p, > = %K(chc.Aise.apa)- [aig ap, > (5.1)
a
with the compound SALC coefficient;
. B — «cetateyy,
K(yepy,Aice,ap,) = {C}lemc Z(p D p) (2 ‘Asepe) (5.2)

In comparison to [10, ii],the phase factor {c% has been included in
order to allow for spin~orbitals. The definition is in accordance
with (2,34),
The proof of (5.1/2) results from the transformation property of
the AOs:
U(g){Aip ap) = f{‘__(_l DZp(g)cﬁi(g)-lAkwaaO (5.3)

Since the SALC coefficients reduce the representation GA and the 3jm
symbols the remaining product representation, the compound SALC co-
efficients reduce the direct product az:cA in (5.3).

In the appendix 1 this method of symmetry-adaption is compared to
the conventional technique of the projection operators.

If we now consider the matrix elements of tensor operators, they
can be factorized as usual by the WET:

{aee,9,2)v0p, |25 (B, 0y0) 8dpy D

= g ctg dya
= Zhee,052) 7ol 2EII(BYT, 94064 (p 3 o)

(5.4)

Now the ordinary, reduced matrix element of (5.4) is related to the
BRM in the following theorem:

4Aee,¢aa)yd]TgH(Bwf,¢bb)6d> —{d}{c dga{Vdimc-dimd’ (5.5)
-ABS
-%)‘_‘B%\{‘ Z{=EBS)" {e t % }E) PIs| e,9 o B-(Acpaa“ 8} Bcpbb)ggg
Y 6 e

In this theorem appears a typical, geometric invariant of the polyhe-
dral framework, the “polyhedral isoscalar™. It refers to the equiva-
lent triangles (-ABS) and is defined by (6.6 ). The details are dis-
cussed in the following section.

The derivation of the theorem (5.5) is as follows., We first solve
(5.4) for the reduced matrix element and thekinsert (5.1) into the
ordinary matrix elements., This yields sums over bicentric matrix ele-
ments, which are replaced by (4.6).The five resulting 3jm symbols are
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collected in a 9j and one 3jm symbol using the rule of de-Shalit (2.54).
Except for the BRM and the 9j symbol the remainder is equal to the
right side of (6, 6 ) and thus suggests the definition of the polyhe~
dral isoscalar.

The skipping of all additional indices in (5.5) shows again the es-
sential structure, which is given by a friple sum only:

(e, a)cliTéll(BE,b)d) = 1d§{c+dg}v’—d1mg__dmd’ (5.6)
S VECHBS ) {e f+k+} PIs("5+2 £) - (aalirBilBb)f,

If we regard the reduced matrix elements of the s.,-a, MOs as the
physical properties of a molecule, we can say: The theorem (5.,5/6) ex~
presses the non-local invariants representing the physical properties
by the BRMs, the local invariants of the coordination, This connection
is mediated by the sums for S and k, i.e. by a sum over the different
coordinations of the atoms and a sum over the representations k con-
tained in os. The sum for h is more technical. As d in the sum (4.5)
it counts the multiplicity of the identical representation in the four-
fold product a'xb xgxk™ (cf. also eq.(7.15)).

1f 78 is the Hamiltonian of the system at hand, the BRMs (with S#0)
on the right side are the invariant representatives of the resonance
integrals and describe the chemical binding along the polyhedral ed-
ges S. These invariants thus are the appropriate candidates for a
semi~empirical parametrization (Htickel, Wolfsberg~Helmholtz), The au-
thor is of the opinion that relevant parameters must not depend on
the numbering of atoms and the choice of axes (cf. section 13).

~ From this interpretation we conclude that (5.5) is the first, poly-
hedral example of the structure (1.2). The geometrical factor in this

case is ( +d ~A B S

GEO, (X,¥,2) _{d}{c dgafVZ(~ABS)dimc-dimd® Z?e f*k*}s ‘PIs| e 9 o (5.7)
{a b*h)n e’f xlp
v 68

with x=(AaBbg), y=(ceyc,nfdd,a), and z=(hnéSck). (5.5) then reads:

‘ h
Qace,0,8)7cllr® W9z, 9,0)80), = 630, (x,7,2)- (Ao altBBoy by (5.8)
In order to invert this relation we need an orthogonality relation

of the geometrical factors for a fixed constellation x=(AaBbg). From
the relations (2.55) and (6.9/10) we derive:

2GEO, (x,y,zft GEO, (x, v,2) = 8(z,2)/dimh (5.9)

y‘

SaimheGEO, (x,7,2)+GE0, (x,72) = 8(y,%) (5.10)

Z

and further the inversion of (5.8):
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(A9, 2H78[Bp, b) TP = gdimh-GEOi(x,y,z)-<(Aee,(paa)yc||Tg||(B(pf,cpbb)6@(@ \
5.11)
This relation may be used to adjust semi-empirical parameters.

As in the preceeding section,we write the formulae for the scalar
operators again separately, whereby the 9j symbol reduces according
to (2.52/53). (5.4) then becomes:

{Aee,9,2)yep, | T|(BozL, 9, b) bdp, > (5.12)
= 6(c,d)6(pc,pd)Vdimc (Aee,cpaa)ycllTH(Bq)f,q)bb)6<>
and (505):
{ree,p, 2)yel TII(Bof,9,b)6d> = 6(c,d){b}fc"’fb6}\f—_'§i%cs (5.13)
B‘(Acp 220 T Beb) d

- L+ e fix?
- - ‘{
EnBSE {ab kn}VZi ABS) /dimk pratet }Y‘ST)BPIS €9

o
etf k
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6., Polyhedral coefficients referring to edges

In section 3,we have noted the parallelism of the SALC coefficients
(K;IAaar) and the subgroup-adaption coefficients <gm|daaﬁ>, since both
types of coefficients decompose reducible representations of the group
G. The analogous pairs of equations are (2.69) and (3.8), (2.70) and
(3.6), (2,71) and (3.7). We now pursue this parallelism further and
show that it also comprises the 3jm symbols of G/and the isoscalar fac=
tors of GID Ge

The representations d(d) etc, are coupled by the 3jm symbols of the
group Gﬁ which in this section is supposed to be simply reducible. In
other words the 3jm symbols of ¢ couple reducible representations of
G. This observation suggests that there might be also a coupling of
the reducible representations GS of G, Indeed, this is true and the
part of the coupling coefficients is now played by the topological ma=-
trices T(ﬁig). The analogue of eq. (2,25) is:

c ABCy _ _ABC
Eoﬁ(g)cslfm(g)cpq(g)v(ﬂp) = T(mg) (6.1)
This equation represents the mapping of the triangle K;+§;+5;=O onto

the equivalent triangle Kl:ﬁm*'?? =0 by the operation g, The analogue
of the orthogonality relation (2.26) is:

| Ev(ﬁ’g)x(ﬁﬁ = 8(C,D)8(m,n)/2(C) , (6.2)

where Z(C) is the number of edge vectors of type C. Note the possible
difference of Z(ABC) and Z(C), since one edge vector of type C may be
shared by different triangles of type ABC. In this case,C must be in-
variant to some symmetry operations, Each ¢, is shared by ¢=Z(ABC)/Z(C)
triangles, Since Ki+ﬁi+€;=o excludes KL4§3+Dn=O, the left side of (6.2)
is zero unless ﬁ;:ﬁ;. If now ﬁ;:ﬁ;, there are q non-zero summands and,
because of the normalization chosen in (3.1),eq.(6.2) is valid.
If the vectors of type A and B point from the .centre of symmetry

to certain positions, we have Z(ABC)=Z(C) and each 6; uniquely deter-
mines a pair (K;, ﬁ;). Only in this caseywe get the second orthogona-
lity conditiony

SO (R () = 8(1,1)8(k,m) (6.3)

the analogue of (2,27). When using consequences of (6.3),we allways
have to make shure that Z(ABC)=Z(C).

We now proceed as with the 3jm symbols of the supergroup G and trans-
form the topological matrix into the s,-a, basis (ef.(2.72)):

x By A B Cy,» = => .
flabe 2 g o) (K laaak) (B IBgb1) (T foyem)  (6.4)
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According to the WET, we get the analogue of Racah’s factorization lem~

ma (2.73%
A
(
k

which defines the “polyhedral isoscalar factor™ (cf.(2.74)):

s'(lacql)f]fl)s ’ (6.5)

c
Tl = Zrls
n €

ABC
agy
abe

HPo™Ww

ABC ABC > b
PIs aBy = %x(rst)(ﬁ’rlmak)(ﬁ’slmbl)(ctlcnm)(il;)s (6.6)

Since the topological matrices are real and (by choice) invariant to
all permutations of columns, we have the following symmetries of the
polyhedral isoscalars, They are invariant to even permutations and
odd permutations yield a phase factor:

ABC ACB
PIs|aBy| = {abce}-PIs|ayB (6.7)
abcle ach fe
The complex conjugation is simple:
aBcf® ABC
PIs|aBy| = PIs|a.B Y, (6.8)
abecje a'bec |e

From (6,.,2) we derive the first orthogonality relation of the polyhedral
isoscalars (cf.(2,77)):

ABC Y ABD
S % PIs aByI.PIs apo| = 8(C,D)8(y,0)dime/Z(C) (6.9)
aafbe abe e abcle

The analogue of (2.78) following from (6.3) is subjected to the re-
striction Z(ABC)=Z(C):

ABC ABC
g: 7Z(C)PIs aByY-PIs(cry = 8(a,s8)8(b,t)6(x,0)8(B,7)8(e,n)dime (6,10)
Y abcje stein

Analogous to (2.79/80))we derive the special case

ABO
PIsa%i) = 8(-4,B)8(a,p)8(a*,b)8(e,1)Vdina/z(A), (6.11)
a €

and the sum rule!

AC A
ma-PIs( a a y| = 8(c,0™)8(y,1) (6.12)
aa aal

Instead of (6.6), we can derive from (6.5),by the help of (2.26), the
more general relation analogous to (2,81):

5 (ray) (K faaak) (B 1Bgb1) (G |ovem) (G1)°
rs
= 8¢,d)8(myn)edime”

ABC

agy
abe

(6.13)
i-PIs

€
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This relation allows several rearrangements like:

ABC b
Z’r(rst)(A facak) (B |BpbL) = g%ms oy E‘§1$>E<Cvcml?f;) (6.14)

A first application of the polyhedral isoscalars we have already met
in (5.5) because we got an expression including the right hand side of
(6.6). The polyhedral isoscalars are the group theoretical, i.e. inva-
riant representation of the triangular conditions like K;+§;¥6;=O. As
we shall see later on,such triple relations of *“polyhedral objects™
can be generalized.

Another application,already announced in section 4,results from the
product of two bicentric matrices:

MAiw am Bkwbbp %E% o Aiwaam,Clwccn'Q01¢ccn,Bk¢bbp (6.15)

Inserting this into (4.14) yields the BRM of the product matrix in
terms of the BRMs of the factors. The derivation resembles that of
(5.5) and results in:

8 STU)d i
M(Awaa“Bwbb)See {b}[ab+e5}§:: TTnf%:%éJg%%;;%;%%E {e Z?gTTa

C9cC (6.16)
£y

*PIs(e N
etf £

-P(AwaaMC¢cc);an(chcﬂBwbb)Uﬁ{
«
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7. Triangular coefficients
7.1, Representations induced by triangles

In the same way as the polyhedral edges,the triangles and distorted
tetrahedra subtended in the molecular framework form equivalent sets
with respect to the symmetry group. These sets again carry reducible
representations of the group, This is of interest for the functions
depending on the triangles or pseudo-tetrahedra,‘for instance the mo-
lecular three- or four-centre integrals., With regard to this applica-
tion it is necessary to distinguish the triangles and pseudo-~tetrahe~
dra by valued or numbered vertices. This distinection accords to our
treatment of the edges as vectors, i.e., as line segments with orienta-
tion or valued ends. The numbering becomes essential, if the the verti-
ces of the triangle or pseudo-tetrahedron are equivalent to each other.
Thus a triangle or pseudo~-tetrahedro is invariant to a symmetry opera-
tion only, if all its vertices lie on the reflection plane or the ro-
tation axis, As for the edges we have to take into account degenerate
cases, i.e, triangles and pseudo-tetrahedra with coincident vertices.
The extreme cases are the null-triangles and null-tetrahedra with three
or four coinciding vertices.

In this section we discuss the symmetry-adaption of triangles, If
A is a set of equivalent triangles Ai' then these triangles carry the
representation oA analogous to (3.3):

= T Oy (7.1)

with the characters A A
o"(g) = goii(g) (7.2)
They are equal to the number of triangles invariant to the operation
g. Again the representation oA is decomposed according to the bran-
ching rule (2.10/11) with a multiplicity n(4,a), In analogy to (3.4/5)
the unitary transformation is given by:

g(AaarMi)ofkw)(AkMsbs) =5(a,)6(2, 802 (g) (7.3)
1
§ofk(g)<AkMsbs) = $02_(g) (4, |daar) (7.4)
r

The matrix elements (Ai'Aaar) are termed triangular SALC (TSALC) coef=-
ficients, The unitary relations analogous to (3.6/7) are:

;Qlaar‘Ai)(AilABbs) = 8(a,b)s(a,p)d(xr,s) (7.5)
%;;(AilAaar)(AaarlAk) = 8(i,k) (7.6)

Up to now we have used an arbitrary numbering of the triangles
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irrespective of the numbers of their vertices. The interrelation of
the vertices and triangles is again expressed by a topological matrix:

AACB) 1/VZ(E$ if the ordered triple T C B revresents the
©(
0 otherwise,

k? 1 Yertices ofl& (7.7)
where 7(A) is the number of equivalent triangles in the setl] . The or-
der ACB has been chosen with regard to the molecular three~centre in-
tegrals (cf.(8.1/3)). .

The topological matrix is utilized to reduce the triangular SALC
coefficients Qﬂ lAaar) to the ordinary SALC coefficients. The technlque
is similar to (3 25/26), Each trianglel& is mapped onto a vector RJ

R = T GheD ey k+u20m+p.3Bl) (7.8)

By the choice of the fixed numbers Bys We have to take care that R, #R
if Aj#dk Since this mapping is bljectlve, we have 0R=6 . Therefore
the triangular SALC coefficients of the set 4 are equal to the ordina-
ry SALC coefficients of the set R:

(A.,Aaar) = (ﬁ;'Raar) (7.9)

In prlnciple,thls relation would allow the total elimination of the
triangles A by the vectors R. Because of (7.8), an integral with the
three centres Ak, 6;, and 7? can be regarded as a function of one vec-
tor ﬁ% Although this 1nterpretat10n is valid, it might be confusing.
So we keep to the more expressive notatlonﬂd and use (7.9) only for
the calculation of (A lAaar)

Using (7. 8)7we explicitely show that any function of three posi-

tions can be regarded as a function over a set of triangles:
B(ly) = (yf) = ToeCieD) Bl By (7.10)

The notation (Ai‘F) suggests the same proceeding as in section 3 and
the interpretation of (7.5/6) as the orthogonality and completeness
relations of a set of s.~a., triangle functions. This argument leads
to the conclusion that every triangle function (AilF) can be expanded
analogous to (3.16/17):

4 |7 = %(Ai’l\aar) (Acar |F) (7.11)

with the expansion coefficients:
(Acar|F) = §(Aaar|Ai)(Ai|G) (7.12)

If such a function depends on the intrinsic parameters of the triangles
only, but not on their orientation in space, then it is invariant on
the setA., In this calse,we simply write F(A) or Fp. An example is the
reduced matrix element in eq.(8.1).
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Te2+, The coupling of triangular representations

The topological matrices (7.8) are quite analogous to (3.1) and there-
fore have corresponding orthogonality relations:

(v () = 84, 9)5(1,9)/2) (7.13)
IR (fﬁgﬁ) = 6(1,)5(n,2)5(1,0) (7.14)

Since A; uniquely determines the three vertices Ak, Bl’ and ﬁ; (7.14)
is not subjected to a restriction as (6.3).
The topological matrices (7.8) have four columns of indices., A di-
" recet treatment in the sense of section 6 would lead to a parallelism
with the group-theoretical 4jm symbols, which couple four irreducible
representations [34]. But the 4jm symbols can be factorized into 3jm
symbols in the following way:

b .
(EBed)=n® = 5232 o atme (7.15)

The collective index ene counts the multiplicity of the identical re-
prsentation in the direct product ax b xec Xd, This suggests to try a
corresponding decomposition of the topological matrix (7.8), which is
achieved as follows. Instead by its three vertices, a triangle can be
determined by one of its edges and the opposite vertex, The interrela-
tion of the triangle Ai’ the edge §i,and the vertex 83 is expressed
by a further topological matrix, For the purpose of discrimination
from (3.1), we call it a topological matrix of second kind:

» ASC INZAY if ﬁ; is the 2nd vertex and §; points from the

Gipm) = { 1st to the 3rd vertex of Ai (7.16)

0 otherwise
The original interrelation (7.8) now can be decomposed:
S -
“() =I5 Qo) CADVEES) (7.17)
The orthogonality relations follow immediately from the definitions
T (10 (Gom) = 8(4,0)8(1,0)/2(4) (7.18)
EZ(A)T (450)% (§52) = 8(x,0)5(m,p) (7.19)

0f course, (7.18/19) combined with (6.2/3) yield (7.13/14). Again
there is no restrietion for (7.19), since A uniquely determines S
and E?
We now strietly follow the proceeding in section 6 from eq,(6.4)
onwards, The transformation of <® into the s,-a, basis yields!?
Asc
< ggz = Z;; ASC)(A ‘Aédp)(sk‘Sosq)(C (cyer) (7.20)
pr/ *
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and again the factorization by the WET;

dsc Asc)
2|doy| _ 2 dscye
™ dse ] = JPIs ggz (qu) (7.21)
pqar
with the ”polyhedral isoscalar of the second kind™:
Asc dscyef
. PIs? 60 (i )(A Asdp) (5] |S0sq) (T |cyer) (85€) (7.22)
dsz € EE% ' k’ l v par
The orthogonality relations follow from (7.18/19):
, [4sC * 0sC
S~ SP1s® {Soy | PIs? [Foy| = 6(4,0)8(8,F)dimd/z(8) (7.23)
08 yce dsc /e dscfe
X Asc . , . ,
g;z@l)PIs éoy) PIs® [8dY | = 8(0,0)6(s,8)8(y,7)8(c,c)6(e,n) dimd (7.24)
dsc/e add In

(7.2 ) again can be generalized to
&

p—_ (450) (4,1 400) (3, |s050) (] forer) (350)° 40172
= é(s,s")é(q,q/)dims'iPIs2 Soy
dscle

This can be derived from (7.21) by the orthonality relation (2.26).
The relations (2.40), (2.81), (6.14), and (7.25) are all of the same
type and can be proved by a uniform method, We have a term of the form
X(qqo, the left hand side of these equations. Starting now from the
expression ZD (g)X( ) we shift the operationgin X from term to term,

In the case of (7.25) for instance,we use the relations

g(AccarMi)oik(g) = Y02 () (daas|d,) , (7.26)
s

T P8 o (8)%° (4500 = T (15)0y5(0) (7.27)
1
and (2.25)., This shifting finally results in:
D05, (XD = KDY (o) (7.28)
q

Thus X would achieve a similarity transformation between irreducible
representations, According to Schur’s lemma follows;

X(35) = 6(s,)5(a, ) X(5)

where X(3%) does not depend on q, By summation for g with (7.22), fi=
nally follows (7.25).
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8, Triangular invariants

The most important examples of functions defined on triangles are
the molecular three-~centre nuclear-attraction integrals. Because of the
expansion theorem (7.11) they can be factorized as follows: ’

Gig am| 7=, 171 |Brg, bo)> (8.1)
-3 §<Aq>alICr'iquabb)Mcmz 1= (4583 (3D )54, l4yen)

By this relation the tricentric, reduced matrix elements (A.alic.liB. b)AYc
are defined, the abbreviation of which shall be TRM. Because of the
limited, graphical possibilities the symbol of the TRM turns out some-
what similar to that of the BRM., But the third centre of the operator
and the index referring to a set of equivalent triangles should suffice
for a distinction.

In order to prove (8. 1),we congider the expression,

Isc(Ai,Cl,%) = Z(j‘1 2 g)e*dimm (A.icpaam,lr- 1}:Bkcpbbq> (8.2)
According to (7. 10);150 is a function of the triangles A
I;°(A) = S_VEUEY T(4e0) 15 (R, 6, B (8.3)

Noting (7.11),we can readily expand IE:c in triangular SALC coefficients,
Since IE:c transforms according to the representation c, the expansion
is limited to the coefficients Qﬁ 'Aycn)

;c(AJ) = %(AwaaHCr'iﬂBwbb)AYc(Aj'Aycn) _ (8.4)

We now invert the relations (8.2) and (8, 3)7using (2.27) and (7.14):
g, am] 175117 Broybd) = (5 D ORIE,TLE)  (8.5)
ROELELE) = YT JETARMIOW) (8.6)

Inserting now (8,4) and (8.6) into (8.5) we get (8.1).
If we invert (8.4) by (7.5),we get

(AwaaHCr-iqubb)zYc (8.7)
+ N o
= % (AycnlAj)VZZZTT(gﬁgi)dimc(: 2 g)ézgiwaamllftcll 1,Bcpbbq}

which is needed in section 15,

Because of the factorization of the topological matrix given in
(7.17),eq.(8.1) takes the following form, which is appropriate for fur-
ther calculations:

g b 5oy ) g, VEBIZ(-ABSY
Qig amf I7-3) 17 |Bke bg) = e (Ap allcr ||Bcpbb)AYc Z(B8)Z(~hBS
(8.8)
Ascy a*d cte
'T( :Lkr)T (jrl)(m q n) (Aj'Ach)
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The main application of (8.1 or 8) is the calculation of the matrix ele-
ments of the nuclear potential

V= ggc/rr’-a;; ; (8.9)

where QC is the charge of the atoms of set C. The potential contains
the totally symmetric partial sums .

gi/lr—cll ’ (8.10)

because these sums are just the totally symmetric linear combinations
of the operators 1/‘EL§ZI. We rewrite these sums in the terminology of
(5.1/2). The symmetry species occurring in these formulae are all total-
ly symmetric, i.e. a=e=c=1:
Vo = VZ(O7 §(01(011) o (8.11)

Since the improper two~centre integrals of the entire molecular po=-
tential trace back to the three-centre nuclear-attraction integrals,
we now can expresses the BRMs of the molecular potential V, or ratherof

the partial sums VC by the TRMs. Because of (8.11),the matrix elements
are

<419, em |V, |Bky, bo) = VZ(E)§(631011)<31¢aam]tFlﬁzl‘i]Bk¢bbq)
and further with (8.8):

<aip,am|V | Bk, ba) = = Zr(Acpaan cr ™ IBgyb)§  VZTEIZ(-ABS)Z(CT

(8.12)
ikr’’m g n

.T(-ABS)(a+b c)sgg %gg)(ﬂ lAycn)(le01i)
Reshaping (7.25);the sum for j and 1 is found to be

%;ka(gig)(Aleycn)(ai|01i) = dimc-iéPIsa (§;’Sccn). (8.13)

A S C
Yo

c ctt
If we now insert (8.13) into (8.12) and then introduce the result into
(4.10),we finally get the intended relationship:

- Asc
(A¢aa"VCHB¢bb)§cc = %;(A¢aaﬂCr'1"B¢bb)zchZUTSZ(CT-PISZ(g g+i) (8.14)

This shows that all the TRMs, the orbitals of which adjoin to the edges
of type S, contribute to the BRMs belonging to type S. The geometric
relationship is mediated by a polyhedral isoscalar of the second kind,
which is relatively simple: '

(8445)
GAKSLE) .  (359) (44 |8yca) (socq) )

Introducing (8.14) into (5.13) allows to express all matrix elements
of the potential VC with respect to the s.-a., MOs by the TRMs. Since
this relationship is often needed, we integrate it by a geometrical
factor:

2 ASC
Y ©
c ch1
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<(Aee,cpaa)yc"VC"(Bcpf,cpbb)ét> = EGEOZ(x,y,z)-(AcpaaMCr“iIchpbb)Rak (8.16)

with the collective indices x=(Aa,Bb,C), y=(ce,9f,y8c) and z=(8ak,n).
The geometrical factor is given by

GEO,(%,¥,2) = Wm.ﬁ%mmm{% {c*tp8} {eb*rn}

{e f+k+} -A B S ,fAsc (8.17)
LI DC O S > Pis| e,9 of PIs"|{a ©
b a e {1onB otf X 8 k kH1

The double sum for S and o connecting the two polyhedral isoscalars re-
sults from the decomposition (7.17) and represents the higher polyhedral
isoscalar related to (7.7):

AACB -4 B S ,|Asc
PIs|a g, ;V_(———)" PIs| €,9 o] PIs ac (8.18)
keif e*f kg k k*1

| g¥
- mﬁm(?ﬁgi)(Aeep'Ai)(Bk'B(PfQ)(A |Aatcr) (5 g 0P

If this isoscalar is introduced, the geometrical factor takes the form:

GEO,(xX,y,2) = \FZ(A)Z(C)f;\fdimc/dimk'{b}fc"'fbé}_ieb+kn}

o f+k+} AascB (8.19)
«PI
{b"'a"'c+ Yo6mB 5 i 2+i %

B
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9, Symmetry-adapted geminals and densities

Preparatory to the discussion of the two-particle integrals,we ex~
plain the composition of two-particle functions and one~-particle den-
sities., The starting point are the atomic orbitals (4.1/3). The usual
proceeding is as follows: forming the s.-a, LCAOs according to (5.1/2)
and coupling two of these MOs yielding the s.-a, geminals:

’ [(Ase,cpaa)YC, (B(pf,(pbb)éd]cxgr>
o+
= {ehVaimg-L(; g £)*} (see,p,a)yeD « [ (Bof,p,b)8dd>

For sake of clarity,we repeat this equation omitting the multiplicity
indices and readily inserting (5.1) into (9.1):

l[(Ae,a)c,(Bf,b)d]gr> (9.2)
g+ ) ] .
={E}V31mg'§ mn(g q %)-K(cp,Aie,am)-K(dq,ij,bn)-‘Alam>'lB3bn>

Another possible construction of symmetric geminals in the spirit
of valence bond theory is as follows: We directly couple the product
of the two AOs and size them according to the distance vectors between
their atomic centres:

| {4,BlsK, [9, 2,9, bIpht)
1+
= {n} VZ{=ABS)a1aE -%r('ﬁi)(; D'0yB. |aig, am- [Big, brd

Cne now notices that these two-centre or edge geminals transform accor-

(9.1)

(9.3)

ding to the direct product representation csxih. The final symmetry-
adaption then is achieved by

| (4, B1505, [9,2, 9,01 Bh) ey =3 K (ugw, Skos, bt) | [4, Bl sk, (o 2,0, 5] pntp(S+4)

This construction was already méntioned in [11], eq.(39). But also in
the preceeding sections 4 and 8,(9,3/4) is implicitly contained with
the difference that not orbitals of two different particles were coup-
led yielding a s.-a., geminal but the bra and ket orbitals of one par-
ticle yielding a s.-a., density. Hence the derivation of (4.4/6) and
(8.1) can be achieved in analogy to (9.3/4) by forming consecutively
the one-particle densities:
+ a btn . .

[Zl(ai9,2%,Bip p)ent] =  VEEE-3(C 2 D)P- Qio an|B> @IBjo bn>  (9.5)
- + -ABS ) .

#| [4,B1sk, [o,a79, b1ght] = VZ(- -Astgr( 130) [Fl(aip a*, Bip b)pnt] (9.6)
and finally the s,-a, density:

[Z|((a,BlS0s, [9,a%, 9, 0]1Bn)ugr] = (9.7)
9.7
= EK(p.gr, skos,ht) « [F] [4,B]sk, [, 2,0, bIpnt]

The square brackets on the left-hand side are justified by the relation-
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ship to the integrals (1i.1 and 7). In the case of (4.4/6), subsequent=
ly,the density and the tensor operator have to be coupled. Then follows
the integration with respect to ¥, The s.-a. density also occurs in the
two~particle integrals.

Both types of geminals (9,1 and 2) must be related by a unitary
transformation, since only the order of different couplings has been
interchanged., The transformation does not depend on the special type
of orbitals, i.e., the quantum numbers ¢, and Ppe 2and not on the compo-
nent r. We then have to calculate the coefficients of the expansion

'([A,B]Scs,[¢aa,¢bb]Bh)ugﬁ> »
=2 __ %(E(Ase,awc, (Bot,b)sdlag ) ( [4,B)sos, [2,b]8h)pg> (9.8)
eeycpfoda
«| [ae,9,2) ye, (Bof, D) 8dTagD)
If we use orthonormalized atomic orbitals like S~functions the coeffi-
cients are the overlap integrals of the geminals (9.1 and 4). Because
of {Aip am|Bky,bn) = 5(4,B)8(i,k)8(a,b)s(m,n), we get:
<[(Ase,a)yc,(Bwf,b)éd]agl([A,B]Scs,[é,b]sh)ug> ot
= VZ(=ABS)dimh-dimc+dimdYPIs
T

ABS
€.0,0
etrts

The same transformation applies to the demsities,and theorem (5.5)
is the result of this recoupling. The geometrical factor (5.7) is equal
to (9,9) except for a different normalization and phase.
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10, Pseudo-tetrahedral coefficients

We now treat the pseudo-tetrahedra with numbered vertices just as
the oriented triangles in section 7. The principles have been lined out
there,

1f ¥ is the symbol of a set of equivalent pseudo~tetrahedra f;, then
the egs.(7.1 to 6) apply with the substitution of & for A (and % for e
respectively). We therefore do not repeat them here, We shall term the
coefficients of the quadrocentric linear combinations QSALC coeffici-
ents, (3&| aap), Quadrocentric linear combinations are s,-a, linear
combinations of quadrocentric "objects™, especially four=-centre inte-
grals, We use the mixtum compositum‘huadrocentric"instead of tetracen-
tric, because the letter T has already been used as an abbreviation of
tricentric.

The relationship between the tetrahedra and the vertices is again ex-
pressed by a topologicalimatrix:

(leCD { INZ(F) if K}, ﬁi, E;, T, in this order are the

m !
13kin vertices of T&. (10.1)

0 otherwise
where Z(3") is the number of equivalent tetrahedra in the set¥d . And
again,we associate a vector ﬁ; to each pseudo=tetrahedron $1 by

R = VZ(’”% mT(irﬁ(l}g)'(**.1-’?;3““2?1{*“361*”45;1)/ (10.2)
and consequently have
(3&'3hap) = (ﬁ;IRaap) , (10.3)

which is used to calculate the QSALC coefficients. For details cf. sec=
tion 7.

Again functions of four centres, F(K},ﬁz,ﬁz,ﬁ;), are regarded as
functions of the pseudo-tetrahedra,

2G5y) = VEOT 3 mﬂ’v.fgﬁgg)-m;.ﬁ‘k,a;,f;) , L (10.0)
and can be expanded in QSALC coefficients:

R(3;) = (541P) =%(3’il§aap)(3’aaph") (10.5)
with

(aap|F) = g(’raaplﬁ)(f’ilr"), (10.6)

The topological matrices (10.1) have the orthogonality relations:
%ﬂﬁﬁggmgﬁg@ = 8(5,%6(1,m)/2(5)  (10.7)

§z(s’)1(f§£§3)x(ﬁggﬁ> = 8(1,7)8(k,8)8(1,)6(mu)  (10.8)

Again we can reduce the topological matrix (10.1) by a factorization.
For this purpose, we characterize the pseudo=-tetrahedra by two opposite
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edge vectors, which link the vertices 1 and 3, and 2 and 4 respective-
ly. This relationship is expressed by;

3(TST) _ { INZFY it Sk links the vertices 1 and 2, and T links

1 (10.9)

? the vertices 2 and 4.
1kl 0 otherwise

The factorization then is given by:

“(im = & 5 CopVIIes e (i IR (D) (10.10)

The topological matrix t° now is treated just as 7% in section 7. The
orthogonality relations are:

s She 45D = 85,0 8(1,3)/2(5) (10.11)
udCaly (550)2* (15D = 6(s,m)8(%,0) (10.12)
The transformetion into the s.~a. basis yields;
ST
TB(;%Z 2:; (YSE)(?’I?hax)(S lScby)(Tt'TTcz) (10.13)
is
Xy2
with the subsequent factorization
§sT %5
5 Q
| 507 = Te1s® a0t -(f(;g)s, (10.14)
xy2 £ \abecle
where the *“polyhedral isoscalar of the third kind™ is given by:
rsm) 5 FST abcye*
aoT ( )(T'I?aax)(s [soby ) (T {TTez) (32°) (10.15)
abele g:; ist t xyz:
From (10.11/12), one derives the orthogonality relations:
\* ST
z% S P1s® (aot| PIs®|Bot| = 8(5,#)6(x,p)dina/z(5) (10.16)
ob Tce abele abele
ssTi* ST )
S 7(%)P1s® |aot | PIs’ |aoT| = 6(0,0)6(b,b)d(7,7)8(c,c)8(e,n) dima  (10.17)
Sa abele abe/n

without the factorization (iO.iO)a.rather complex polyhedral isoscalar
results from (10.1):

ABCD
PT 5 - T(F1E0D) (5, | $7tp,) (K] |Aaap,) () 1BBbRy)
*\tabra lecotu qng at gkl ,q‘ ) (g b, ) O ° (10.18)

ace e)e’if’Lb d cp(t e f)p.*'

= = . s
« (T lcyep,) (D] |Dédp, )dime dlmf(pap 2 Gepop) (pyp, P}

The subsequent application of (10.10) splits up this coefficient as

follows:
YABCD ACS ~BDT

PIs(-ro:By& 5:1:::\{' Z(=ACS)Z(~BDT) PIs( cxys") Pis Béq:“) PIs’ -cdcp’ (10 19)
tabed/eepfp S ace je bdf e tef
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11, Two-particle interaction
11,1, The four-centre integrals
The interaction of the molecular electrons is, except for relati-

vistic effects, represented by the scalar operator i/r12’ which in ge-
neral yields four-centre integrals over the atomic orbitals. As now
can be foreseen,these integrals can be expanded in QSALC coefficients
according to (10.5).

With respect to the four orbitals there are different coupling modes.
Either the orbitals in the bra and in the ket are coupled separately
yielding two-centre geminals,or the orbitals referring to the same par-
ticle are coupled resulting in two s,-a, densities, Whereas the first
coupling mode takes into account the separation of the interaction ac-
cording to electron pairs, the second mode is more capable for the cal=-
culation of the integrals. This aspect, being more important in the pre-
sent context, is accentuated by passing over to the notation usual in
quantum chemistry (cf. {35, 361):

(11.1)
<@i¢aam,Bj¢bbn'rI%,Ck¢ccp,D1¢ddq>=[Ai¢aa+m,Ck¢ccp'rzé'Bj¢bb+n,Dl¢ddq
Since the square brackets are defined without complex conjugatioq,the
* and b show up explicitly.

Using the two-centre demsities (9.5), the integrals (11.1) are redu-

ced to

conjugated representations a

[Ai¢aa+m,0k¢ccp'rzé'Bj¢bb+h,Dl¢ddq] (11.2)
+ =1 R + - - a*c eye, ftd ]
=§e¢ nkiwaa,ckwcc)aer'riz'(Bg@bb,Dl¢dd)¢fs]Vdlme-dlmf(m P » Go q)

Note that,in contrast to the one-centre integrals of scalar operators,
the representations e and f may be different.

The integrals of the right-hand side now are further reduced by the
factorization theorem:

[(Ai¢aafck¢cc)aer'rzél(Bj¢bﬁ+,D19dd)¢fs] (11.3)
. - . + +
=i;;%;(iﬁﬁf)\lz(?’j[’(Acpaa;‘Bcpbb)eeuriéII(Bcpbb;‘Dcpdd)cpf]g,Tg(l‘{ ﬁ )M (3, |5wen)

By this relation,the quadrocentric, reduced matrix elements, QRM, are
defined, They give the following informations: A QRM belongs to a set ¥
of tetrahedra, the representation of which is reduced to g (multipli-
city t) by symmetry-adaption; the two-centre densities are coupled
yielding the representations e (multiplicity ¢) and f (multiplicity o);
finally the coupling of e and f has to yield representation g again
(with multiplicity p).

The proof is as for (4.4/6) or (8.1). Omitting the muliiplicities
again accentuates the essential structure:



{Aia*m,Ckep1r;§,ij*n,nldq] ~ (11.4)
_ + o+
= %;[(A1a+,0ke)erlri§](ij*,pld)fs]vaiméiaiﬁf(; S &y g)
and
[(s1a*,cxc)er |r73|(Byb*,D10)15] , (11.5)

+,
- %ﬂiﬁg)ﬂm Fy{(hat, co) ez (56, 0a) £, (2L 8357, | Bew)

The sums for & and t contain one non-zero summand only, since they sort
out the right pseudo-tetrahedron. Only that for g (and u) is a true sum.

11,2, The matrix elements of the s.~a. molecular orbitals and geminals

The next aim is the calculation of the matrix elements of the ope-~
rator 1/r12 with respect to the s.-a, LCAO-MOs (5.1) and the geminals
(9.1).

Since now four centres are involved, we need a more economical and
compact notation to manage all the quantum numbers, We rewrite (5.1)
as follows:

‘,&épa> = '(Aéaf,aa)&épa> = é_\:.'{ K(&épa,Aia'af,ama)- 'Aiaama> (11.6)
a
The letters a and a always point to the centres of set A (b and B to

B respectively). K is a collective index for (Add,xa)d. We further in-
troduce f*=(Add*,aa™)d.

As for the integrals (11.1)/there are two possible notations of the
integrals of the MOs (11.6):

Kap,,Pbpy |ri38n,, Biny > = [£*a*p,,#ep, |13 B "D, Bdn,) (11.7)

Consequently/there are two types of reduced matrix elements. In the
particle-coupling, the application of the WET yields:

] «épaoyﬁpb ' r;é ' ¢6Pc ’ ”apd>

. T ) bt o ste & (11.8)
= §5;<<xa,zs>csnr12n(¢e.ﬂa>us>-dlms<papbp; (35,20
and in the density coupling:
fap,,Bop, |r75|Een,, Bdp, > (11.9)

<+ e -1 a*e tyr tthtd
= %[u*a*,m)wurigu(z*ﬁ*,zsa)nt]-aimt(;agcpf(papcp%“

Both types of reduced matrix elements are interrelated by 6j symbols
(ef.[17]): R
(43, Bb)osllrgd((2é, B us)

’ 12TE (11.10)

- {3 B 8 Fnofedet H denfasme. (044", 80y vl o0 (5%, 8 ]

T
The reduced matrix elements in the particle coupling are also imme-
diately related to the integrals of the s.-a. geminals (9.1) now taking
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the form:

|8 Bh)osny = ol @m-EG 5 2% M- (Bhmyy  (12.20)
The interaction integrals of these gemlnals aie:

(45,80 0sp |75 (88,84)usp >

= é(s,s)6(ps,ps)dims-i<xﬁé,35)osﬂr;§"(¢é,ﬁ&)u§>,

where the reduced matrix elements on the right are those of eq.{11.6).

The reduced matrix elements defined in (11.8/9) now must be traced
back to the QBMs, Since (11.9) as well as (11.3) are based on the den-
sity coupling, their interrelation is more direct: ‘

[Cata, ge) et S HOE ¥, 3d) mt]

(11.12)

. (11,13)
= 2___GEO (eepfu,%og) - [(Aaa ,Cyc)seﬂr H(Bﬁb ,Déd)wf]“
3 Sog
ceQ uog?
The geometrical factor is derived as follows, We invert (11.9):
[(a*a*,ge)vtir]s II(B*b+.IS&)nt]
(11.14)

= Z(;a; ;% (; : g)n<zapa,ﬁbpb'r12,¢cpc,ﬁan>

where the matrix elements of the right-hand side, because of (11.6),are
given by:
<‘apa Bbpb,r12’¢cP0p¢&Pd> z_}; K(aap p-Aiaa am ) K(Bbpprij bmbf
(11.15)
-K(ycpc,Ckyc,cmc)-K(S&pd,Dléd,dmd)<Alaama,Bijmb'r12leycmc,Dlédmd>
We now insert (11.1~3) into (11.15) and the result into (11.14). These
substitutions yield the factor~

% - a*¢.t T ttH*d n.
GEO5(eepty,fog) 2%%‘2::(Pap AN ) X(aap, ,Ald¥, an_

.K(Bbpb,Bij bmbf'K(ycp ,Ckyc.cm )-K(édpd.DISH dmy) (11.16)
+{dime+dimf. (z ; ;) (Ebi §)¢(§ g g)’v (351(;??&?)’(3q'§6gu)

This formula contains nine 3jm symbols, which now are rearranged by a
two-fold application of the rule of de Shalit (2.54) and the subsequent
application of (2.41):

GEO (sewfu,?bg)

= (2(¥)dimd~dimB+diné.dind -dime-dims)1/? Z:; E%; giméﬂdimf'
LgneenpIy

d dté e [£'Y d '+ e g v d* f
. o, + . + a' d*e ¢ e g
{g+g i }i €:g+g } {f”e t* }ndbu {ee tn}(r aT r) (r £Ty r) (r £T u) (ii 17)
E’Y n ﬂ:f s L4 >4 4 = PABCD
(4
-(Ai]Ad%ra),(leBsbrb)-(ck‘CYcrc)-(Dl{DddEd)-x(qijkl)-(3al?bgu)
The last nine factory form a scalar being nearly identical with the po-
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lyhedral isoscalar (10.18):
GEo3(se¢fp,$“og) = (2(%)dind+dimb-dimé-dind -dime-dims)L/2 %{e'e"tn}
ne (11.18)

IcH'e' fldeP 'TABCD
o + e f g i /
. et . f*fp g% °
{e gp.} {g.,_g } { +g+a (P {f”el £ nrfilu Fls g :H'BH'Y s,’e’cpfp.
ayrn

As a result of the discussion in section 9,we expect that this geome-
trical factor contains twice a recoupling of the densities according
to (9.9) or (5.7). This shows up, if we split up the polyhedral isosca-
lar by (10.19):

a ¢ £ de
GEO3(€e¢fp,?Bg) F. 2;; z;; é {é% tn}{e&@u}-{3+g if}a-{fiﬁ+§ }m
@y ngsd (11.19)
-A CS -B D
by '
'{gke’%+}nﬁﬁu.PIs 7 4 E;PIS Segl f#) P18’ olgﬂp/

with the abbreviation F= VZ(?)Z(-ACS)Z(-BDT)dima-dimﬁ edimC+dimd+dimesdimf’
The comparison with (5.7) then yields:

GEO fu,0g) ={¢}{a}VZ(T)dime-dinf+y § ‘etenifdfputfatot
5(eeotfp, 5og) {eHalvz(Tdine N jee n}f{eroptfatetat
'GEOI(Xi,yi,Zi)'GEOI(XZ,YZ,ZZ)

(11.20)
Jieraet 1. {e. T 8 .
{'5 dt n} {:t‘”'e’ t"}nn'u'u PIs’ 2l
with the compound arguments' Xi (AaCct), yi_(aaaa,ycyc T), 2 —(eensie ),
x,=(BbDdt*), y,=(¢ b, 8ddd, ), and z _(fcpnT#f“‘)
Finally we sum up the results omittlng again the multiplicity indi-
ces, Beecause the many=-particle matrix elements of the two-particle in-

ot

teraction can be traced back to the matrix elements of the s.-a., gemi-
nals using the coefficients of fractional parentage {27, 17}, we start
with the matrix elements of the geminals, According to (11.12/10/13)
we have:

((lé,ﬁﬁ)sllr’éll(%,ﬁa)s) (12.21)
=;f;{§ {34s"}{Bdt} dimt-cBO(e2,58) - [(aa”, Ce) el xRl (BL*, Dd) ],
eisg

with
GEO5(ef, %) ={5H3}VZ(3’)dime'dimf"Lf{e'e+t3{elflg§{é+ét;{5+at+} ﬁ” g %'} (11.22)

215 (535) 030, ((AaCet) , (43, ¢8), (e5e*)) 6RO, ((BUDaL*), (85, dd) , (£22))

Later on from a more general point of view it will turn out, that
the factor GEO3 is even a triple combination of the factors of type

GEOi.
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12, Complete bases of irreducible representations
Having delineated the principal structures proper to the symmetric
polyhedraswe will implement the theory in the following sections by

details concerning the determination of the newly defined coefficients,
or of the invariants BRM, TRM, and QRM from specified approximations

or ab initio formulae., The starting point is the systematic reconstruc-
tion of capable, s.~-a. basis sets with respect to the centre of symme-

try.

12,1, Generalization of Kopsky's theorem

All s,=-a, functions of the translation group can be factorized as
wnk(x)—u (x)sexp(ikx) [37) and those of the rotation group as ¢n1m("3
-Rnl(r) ?[1m>5 where u k(x) and Rnl(r) are scalar functions of the
respective group. This means that there is one function exp(ikx) or
one set of functions <?|1@>, which, combined with an infinite set of
scalar functions, constitutes the complete set of basis functions,

This suggests the question, wether there is an analogue in the case
of point groups, Of course, the s,-a, spherical harmonics (3.12) con=-
stitute the complete basis Rn1<3ﬂlyc§>,and most books on group theory
are content with it. But this basis is not the wanted one; since for
each representation c there are several, moreover infinitely many
values of 1 and y. Thus there are required infinitely many sets of
functions instead of one. The perfect analogue would be one set of
standard functions <?'st.aﬁ> so that Rna(§)<?'st.aﬁ> constitutes the
complete set., It turns out that this perfect analogy exists only for
the one-dimensional, irreducible representations, whereas for the many=-
dimensional, irreducible representations several, standardized sets
<?|st.aap> are required, the munber of which is equal to dima, i,e.
the muitiplicity index a runs from 1 to dima,

Whereas the construction of s,.,~a, spherical harmonics .r equivalent-
ly of, s.-a, homogeneous polynoms in x, y, z is worked out in long
lists of functions [38] and is included in most books on group theory,
the present problem has obviously not attracted much attention, Never-
theless it turns out that every arbitrary, s.-a. function <§ﬂ¢a§> of
species a can be expanded in a finite number of standard functions-

<?l¢aﬁ> z::; (r)-(flst.aaé} (12.1)
An exception from this indifference is a late paper of Kopsky [39].
We learn from it that the problem previously has been passed casually
[40, 41], although - as Kopsky shows - partly in a misleading manner.,
Since Kopsky's theorem i1, the only one used here, is equivalent to
(12.1), we take this for granted. But Kopsky and his predecessors
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confined themselves to the existence of the linearly independent func-
tions and the expansion (12.1). They did not show, how the scalar func-
tions Rza(?) are determined by a given, s.-a, function {(F|pap>. On the
contrary;we can provide a system of standardized functions with stron-
ger properties allowing the inversion of (12.1) and a systematic cal-
culation of the SALC (including TSALC and QSALC) coefficients.

We can regard (12,1) as a special case of the expansion (3.16). Be-
ing unaware about Kopsky’s theorem we could prove (12.1) in this way.
Every position vector ?’together with its rotated images g? makes up
an equivalent set R={gf'with gEG} in the sense of section 3, This means
that the standard functions are proportional to the SALC coefficients
for general positions (i.e. positions being invariant to no symmetry
operation)., The normalization is chosen different allowing for continu-
ity if ¥ approaches an element of symmetry. In analogy to (3.17)y we
use the scalar product

(Fl6) = I_<Fled> &7l (12.2)
geG

with respect to the discrete set R in order to orthonormalize the stan-
dard functions,

We now compile the properties of the standard functions in the fol=-
lowing theorem: For each irreducible representation a of a point group
G there is a set of standardized functions <?|st.aa§> having the pro-
perties:

1) a = 1, 2,.0., dima,

2) 2:;<st.aap'gf><g?|st.6b§> = 8(a,B)8(a,b)8(p,q) plaa,?) (12.3)
g¢ with p(aa,e?) = p(aa,?¥) (12.4)
and p(aa,?)> 0, where p(aa,?) £ 0 if T in general position (12.5)

3) Z(g?'st.aap}p,(aa,?)"1<st.aaplhi"> = 8(g,h) (12.6)

®8P  for every ¥ in general position,
4) Every function <f'¢a§> of species a (component p) is representable
by the expansion dima
R

id = ? (2 t. , 12.7
(Z|vapy ; ? (B @|st.aapy (12.7)
where the scalar functions Rza(?) are defined by:
p.(aa,?)-Rza(?) = %(st.aaplg?)@?'cpap} (12.8)
g

5) Among other possibilities,the standard functions can be chosen ho-
mogeneous in x, y, %z, But in general,the scalar functions are no
polynomes.,

The proof is based on Kopsky 's theorem 1. There are precisely dima li-

nearly independent functions, which we may term <?1na§> (with n=1,.,.,

dimz)., With respect to the set R={g?'with gGG},we can express the li-

near independence by Gram’s determinant [42]:
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det’(map‘nap)‘> 0,if ? in general position,
with (map’nap) = Z(Smap'g@@?lnap). (12.9)
gé

If we admit points of symmetry like ?:5’1, the rank of the determinant
mist decrease because of n(S,a)<dima, Thus in general,we have only

det’(map]nap) |2 0. ‘ (12.10)
We now define the standard functions by the diagonalization of the ma-
trix an(?)=(map|nap) by a non-singular transformation:

(Hst siee €3%¢3 (12,11
st.aap) = Euan T r’na;} .11)

This yields our statements (12.3 to 5). The zeroes of det‘an(i")' and
of its eigenvalues p(aa,'r’) prevent us from normalizing the functions
without destroying the continuity in the whole range of T. Because of
Kopsky’s theorem 1 the functions @lna;} and therefore the functions
<i”st.aap>, too, are complete., The completeness relation is (12,6), from
which follows (12,7). Inverting this by (12,3) yields (12.8).

It is convenient, but not necessary, to choose the standard functions
as homogeneous polynomes. According to Kopsky’s theorem 2,the number
of independent polynomes is equal to or higher than dima, Hence the
number of polynomes is sufficient. We can take them from the lists gi-
ven in [38]., A general method for the generation of polynomes is de~
scribed in [43]. Furthermore care hé.s to be taken that the transforma-
tion (12.11) presérves the polynomial property. This is possible for
instance using Schmidt’s orthogonalization without normalization, i.e,
without any divisions, FPinally the homogeneous polynomes <i"' 'st.aap>
and the scalar, homogeneous polynomes p(aa,i") are fixed only up to a
further transformation of type (12.11).

12.2, Applications
We now come to the applications of the theorem, The relation (12.7),
of course, applies to the s.-a. spherical harmonics (3.19):

dima
liaapy = ;;[' Ri:(?)(?’st.yap> (12.12)

with
u(ra,®) -R:;:('f)=g%<st. 1ap ' g?}(g?[laap}: %-%{st. Yap "f)@"laap} (12.13)

This simplifies many relations containing spherical harmonics, for in-

stance the determination of the expansion coefficients (3.22), Inser-
la 2y pla, a3y,

ting (12,12) into (3.22) yields,because of RYa(Si)— Ya(sk).

c(sga,la) = gima Rla(g)-E(S a,st.y) (12.14)
o(563,12) = S KE(E) 3(5pay oty a4

with an arbitrary é’kés and a limited set of standard coefficients:
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c(spa,st.y) = Z(Sﬁap‘§;)<§;'st.yaﬁ> (12.15)
This reduces the infinite number of c:efficients c(Spa,la) belonging
to special sets S to a limited number of coefficients defined by (12.15).
The scalar functions Rig(f) have to be determined by (12.13). But this
has to be done only once for each symmetry group and not for all the
sets S in each molecular framework,

In the determination of the SALC coefficients,an arbitrary, unitary
transformation (3%.23) has been left in obeyance, This problem is posed
anew for each polyhedral structure and each equivalent set of vectors,
triangles, or tetrahedra, The choice of a standard basis regulates the
multiplicity problem in a uniform way for all structures and all equi-
valent sets within a given symmetry. A1l SALC coefficients - and there-
fore all TSALC and QSALC coefficients, too - can be defined via the
standard functions,

The proceeding is as follows: Inserting the edge vectors of an equi-
valent set S into the standard function yields in dima-n(S,a) cases
<§;'Sﬁaﬁ>=0 and in n(S,a) cases <§;.Saaﬁ>¢0. The latter are necessary
and sufficient to determine the SALC coefficients and to fix especial~-
ly the index a:

(§;,Saap) = <§;‘st.aaﬁ)VordG/Z(S)u(aa,g;j (12.16)
Because of the transformation properties of the standard functions;and
because of (12.3 to 6» the relations defining the SALC coefficients in
section 3 are complied with, By the choice (12.16),the multiplicity
indices of all SALC, TSALC, and QSALC coefficients of all molecules
sharing one symmetry group are fixed.
By (12.16),the expansion coefficients (12,15) are simplified. Be-
cause of (12,3), we get:
T(spa,st.y) = 6(8,7)Vu(pe,5,)z(s)/orde (12.17)
Also the expansion coefficients (3,22) are simplified. Inserting
(12.17) into (12,14) yields:

c(sga,la) = R:é:(gk)\fu(ﬁa,éz)z(s)/ord(}' (12.18)

In analogy to the parity of the spherical harmonics, {-¥|jm>
=(-1)3<f|jm>, we finally define a parity {faa}=#1 of the standard func-
tions by! :

é?‘st,aap} = {aag @Ist.aap} (12.19)
From both relations follows:

Rya(-8) = (-1) fpa}-Rge(D (12,20)
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13, Transformation properties and structure of the multi-centre
integrals

1%.1. General considerations

The theorems (4.4), (8.1), and (11.2/3) demonstrate that the physical

informations of the multi-centre integrals are concentrated in the in-

variants BRM, TRM, and QRM. The theorem are proofs of the existence

of these invariants without regard to special atomic orbitals, The theo~

rems (5.5), (8.14), and (11.,13) then show, how thése informations enter

the reduced (and thereby all ordinary) matrix elements of the molecular

orbitals and geminals, i.,e. the global molecular invariants., This re-

lationship is conditioned exclusively by symmetry and geometry,

The functional type of the atomic orbitals (GTO or STO for instance)
affects only the values and functional form of the BRM, TRM, and QRM.
By inversion, as for instance given in (4.10) and (8.7), these can be
determined in principle from given integral formulae, Since this for-

mal inversion requires all multi-centre integrals, it makes sense on-
ly if the integral formulae allow to eliminate the quantum number of
the individual atomic orbitals, i.e. the components of the representa-
tions, This especially appiies to the magnetic gquantum numbers,

The general structure of the integrals necessary for this purpose
results from their transformation properties in space. This structure
is not related to a special molecular symmetry. It requires the inte=-
gral formulae to be tensorial equations with respect to the angular
momentum algebra [15]. Consequently, we have to start with spherical,
atomic orbitals

{Flnlmy = Rnl(r)<Ffld>, (13.1)
where the spherical harmonics are defined by (3,18). And further we
have to express the multi-centre integrals by rotational invariants,
3jm symbols of the rotation group 0(3), and spherical harmonies of the
atoemic distances, Since the rotation group is a supergroup of all
point groups, all the integral formulae can be systematically adapted
to the special molecular symmetry, Thus without further considerations
the polycentric, reduced matrix elements prove to be composed of the
following constituents only: 1) the rotational invariants, 2) the iso-
scalar factors resulting from the group chain 0(3)= G, 3) the expan=
sion coefficients (3,22) or (12.15) resulting from the spherical har-
monics of the atomic distances, and 4) the nj symbols of the concerned
groups 0(3) and G. Using atomic spin orbitals we have to refer to
SU(2) and ¢’ instead, The rotational invariants again are the only
carriers of the physical information, They are the only factors de-
pending on the special, radial functions Rnl(r). The other constituents
enter the mediating geometrical factors.,
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We now derive the universal integral theorems for the atomic orbi-
tals

<F‘Analama> = Rnalg’?'g' ) .G-K lama> (13.2)

defined with respect to the angular momentum basis, These theorems re-
sult from the transformation properties.

13,2, Two-centre integrals

The theorem concerning the two-centre integrals states that these
integrals over arbitrary, spherical orbitals can be factorized as
follows:

{an1m | o |Bn, 1om S (13.3)
%\{Tﬂﬁﬁ)‘ G 1 1489, Hin 1,57 (3T o M‘)(mam‘ 1p)<aBso1 jmy

This theorem is the generalization of the Wigner-Eckart theorem. The
graphical arrangement of the symbols in the generalized, reduced ma-
trix element shall indicate the coupling of the angular momenta, ABj
stands for the translation operator, The introduction of the solid har-
monics

‘ (@l so1 D= r3<?’jﬁ> (13.4)
~engsures the regular behavior for KEff[44]. If K;ﬁi all terms vanish
except for the ordinary, reduced matrix element of the WET:

b T, L
& 0% 1, % = <o 1 (IT o1, > (13.5)
The angular momenta, of course, can be coupled in an order different
from that in (13.3). The invariants of the other couplings are related

to those of eq.(13.3) by 6j symbols, But only the symmetric arrangsment
of (13.3) yields the simple conjugation relation:

1
CaplylBad, mlin1 > = Gg1 i and, 1Mng1, )7 (<1) ST H et (13.6)
In order to prove (13 3),we form the expression
J _c(d I ot J 1t
Im(ig) - z(m M MO( b)<@n a'TManblbmb>'
It is invariant to translatlons and therefore a function of the dis-
tance vector AB only. We further show the transformation property
with respect to rotations:
- —> 3 —.
(g™ iB) = § 0, (e)1(iB)
m
Since the spherical harmonics are complete, it follows:
13 (5B) ~ @B} jm>
The invariant factor in this proportion,depending on ‘AB‘ only, is the
reduced matrix element, For reasons mentioned above,it is convenient

to gplitt off the factor |AB[j Converting the result by the orthogo-
nality relations of the 3Jm symbols finally yields (13.3),
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Examples of (13,3) concerning the identity, the kinetic energy, and
the momentum operator (i.e. L=0 and 1) can be found in [45, 46],and
further integrals of this type with L=0 in [47, 48], cf.also (A2.13).

13,3, Three-centre nuclear attraction integrals

The description of the three-centre integrals is complicated by the
following dilemma: The theorem can be formulated in two different ver-
sions, the more effective of which being at the same time the more dif-
ficult, Becamse of the translation invariance,only the internal coor-
dinates of the concerned triangle can appearg but there remain many
possibilities of choosing distances and intermal angles. Furthermore
different choices may be appropriate to differemnt radial funectionms,
GT0s or ST0s for instance,

" Since symmetry considerations suggest an equivalent treatment of
both orbitals, the foolowing reference vectors appear suitable to the
integral {an 1l m frgl(Bn,1,m>:

a) EC and BC

b) AE and BC with the weighted mean P = (o} B+ Bﬁ')/(oim%)
The weight factors o% (in the case of GT0s being related.to the orbi=-
tal exponents) may depend on the set X, but not on the individual ato-

mi¢c orbital, Otherwise complications impairing the symmetry comsidera-
tions arise in seetion 15, In the case of individual orbital exponents
the vectors AC and BC are preferable.

Since now splid harmonics depending on several distances occur, it
is convenient to introduce the following combinations of solid harmo=~
nics:

&y T le01(8y,3,) M = V2IHIE(y gigz)<?31sol 30y D, 1501 ,m,>  (13.7)
At first,we formulate a weak theorem- Every three-centre integral
over arbitrary, spherical orbitals has the following structure:

<Ana1ama'rai'3nb1bmﬂ>
= 4n%;:v2i11%3n 1,]l4B chuBnb1b>P(1 1b )<}B 5C)s01(73)1M

The theorem is weak, because nothing is sald about the range of the
summations - except for the triangular conditions for the angular mo-~
menta - and nothing about the dependence of the rotational invariants,
In general these may depend on all the scalar variables |AB{, |PC{,
and AB.BC, The theorem, of course, applies to any other scalar func~
tions of Tae ‘

The formulation using the other reference vectors is given by:
{n.lm )r—i]Bn 1,m

*2 zn%55y25g133§ziauAcchluBnb1b>L 1 1bI')(Ac 5fsor(1)my, (13:9)

(13.8)
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where the rotational invariants now may be functions of |AC|, |BCY,
and AG-BC. The theorems (13.8 and 9) can be converted into one another,
since the invariants are interrelated by

/
1.+l - 2
@nala" ACTBC ”Bnblb> (2L+1) 12—: [nlnﬁ-L“"(PAB“ OJOJL] 'GAn+1 on'+1'

B (13.10)
-073. §A_%-AB P02n<An 1,148 pcdiBn, 1 ST
with o' = (J+j=1=1)/2 -n and conversely by
Gn,1 014872 Boy 1, 5T = (2541) 15— [WonjLlle, i 01011 - o] -oBl ( )
g:: 13.11

2N+J  oon+ Npg2n, Y L
2N+ 20+ 0 - 1l Ac'BCH Buy 1>

with n = (1+11-J-j)/2 -N. In these equations we have used the abbrevia-
tions eAB=VcZ+o§3, gAB=°A°B/eAB’ and g,p=arctan(c,/op). The coefficients

[n313n414L[|cpllnilinzlzl.] are,except for a different normalization, equal
to the Moshinsky-Smirnov coefficients of the Talmi transformation. We
refer to [45), eq.(3.,4) and the comprehensive references therein,

In order to prove (13 8), we form again:

I >,
Iy(£3, 70) = mbM)<Ana oPa 75 [Bop L >

Because of the translatlonal 1nvarlance, this is a function of the dis-

tances AB and PC only, The rotation property is given by:

(g™ 18,g71%0) = 2 Dye(&) * Iy (58, C)

We therefore can express IM by the spherical harmonics of AB and PC
or equivalently by the functions defined in (13.7). The expans:.qn co-
effieients must be scalar, i.e, functions of lA_ﬁI, lIT(E‘, and AB-PC onlys

- 1 ——p .

I (iB,70) = (4n{2L+) 1Z<Lm 1,11 4B7PC 3 By 1 SPGB, BE | s01 (39) T
Converting this equation ’chen yields (13.8). The proof of (13.9) is
analogous. The interrelations (1%.10/11) result from the following
theorem of the solid harmonics defined in (13,7):
> > - -1
<ri,r2‘sol(1112)m> = nz nE [n313n414u|| 9ll 011012L](2L+1)

37374 2n
T3 “er, 4-<F3,?|sol(l 14)LM>
with ? 7, coscp-rzsincp and r4_ r1s1ncp+r cosp, This relation is a spe-
cial case of the more general theorem (3 3) in [45] If we put ri =
;ABKE, T,= eABPc’ 9= =@,ps it follows r3_ }cAﬁ, Ty= 0353 and finally:

<iB, 58501 (141,18 = 53%4 fo5150,1,1l 9,4l 01,01 oL (2L+1)"

2n+1 -1 2n 2n .
373,644, .0, 2. 3, 4.48.8¢C
‘o, op Byp *8,p AC “+BC <AC,BC{s01(1;1,)IH)
Inserting this into (13.8) yields (13.9 and 10), The inverse relation

results, if we put ?1= c,AC, ?2= cBﬁ_(?, and p=+@,p.
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The weak theorem now can be strengthened in two conflicting aspects
by restricting either the dependence of the invariants or the range of
the angular momenta J and j (1 and 1 respectively). The strong theorems
are:

A) Every three-centre integral of arbitrary, spherical orbitals has

the structure (13%.8/9), where the rotational invariants depend on

AB and PC (AC and BC) only. This in general causes unlimited sums

for J and j (1 and 1),

B) Every three-centre integral of arbitrary, spherical orbitals has

the structure (13.8/9) with the limitation J+j =1 atlyp 1+ = 1 +1b).

This in general makes the rotational invariants depending on the

internal angle, i.e, 18- (Kﬁ-ﬁﬁ).

The structure stated in version B) is preserved by the transformations
(13.10/11) in contrast to that of versiom A),

The integrals of Gauss-type or related orbitals [45-47] occupy a
special position, With respect to the reference scheme AB-PC the ine=-
quality J+j< 2na+1a+2nb+lb holds for all intergrals, Thus the integrals
with n =n, =0 are covered by both A) and B),

From the tensor algebraic point of view, the theorem B) has the de-
finite advantage of representing a finite number of integrals by a fi=~
nite number of invariants, too. Generally in case A),the number is in-
finite, The limited summation in the case of GTOs is of no much profit,
since the group theoretically irrelevant radial quantum numbers inter-
fere in the angular momentum algebra,

On the other hand, explicit formulae of type B) are hard to derive
(ef. below), whereas those of type A) result quite naturally from or-
thogonal expansions, For instance the expansien

<Ana alrgt (Boglym>
=1}/
2 n}g;:K}nal a,Cnclcm&><bnclcmc'rc 'Cnclcmc><bnglcmc'Bnblbmb>
cecee

in combination with (13. 3) yields (13.9) with the invariants

¢
1.1 L+1'+1 1 171
gl l4c Bo Byl > = (-1)B+ Hatn. P §V17(21 D Ipla }

«<n 1, lactn 1 Dt <nclc||r Hna @ CBlﬂn b)
A similar proof follows from the addition theorems discussed in [49]:
8(!53+?E!)<E?+?EILM>
-l +1 1f1 >
g:; (-1) 2 I‘\]2L+ (m o M)gL g?&,?é)<ri‘11m1><?é[12mé>

1
From this relation follows eq,(5.12) of [49] having the same structure
as (13.8/9) except for different reference vectors.



56

The first proof of B) given in {50} is recursive and thus quite com-
plicated. The results of [46] now allow a simpler proof for a special,
complete system of orbitals, Since every orbital can be expanded in
such a complete system, the theorem B) is valid for all orbital systems
in the Hilbert space, Since the properties of a special orbital system
do noét matter to the present context, we postpone the proof into the
appendix 2,

13.4. The four-centre integrals
There is an even larger variety of representing the four-centre in=-

teraction integrals, But the principles are the same as for the three-
centre integrals and we can be brief, We confine the representation of
the distorted tetrahedra ABCD to the vector triple KE, ﬁf, and fa'with

= (GZE;GEE)/(°2+°C) and Q = (ozﬁlo 3)/(02+0D). Since now three vec-
tors are involved, we extend (13 7) and define:

<h1,r2,r3[sol(aijz)Jj LM>
= Y2L+l Z(%& ]_\J;I 313)Civr2’s°1(ji Z)JM><->3‘801 ;]3m3>

Again we first state,in a weak theorem that, the four-centre integrals
over arbitrary spherical orbitals pricipally have the following struc~

(13.12)

ture:

<Ana1ama,3nb1bmbtr;%'Cnclcmc,Dndldmd>=vzi3§§£§§v(21+1)(21+1)(2L+1T
i

-[(Analg,Cnclc)lu(ch‘BDjz)JPQj3u(Bnb1;,Dnd1d)1ﬂL (13.13)

Qaic,,ll)(ibi ;xl TTL3 (RS, 58, 5| so1. (4, 32 ) 735 1>

The rotational invarlants [...]L are designed in analogy to the QRMs

in (11.2/3) and the reduced matrix elements in (11.9), cf. also [17]

eq.(7). In general they are functions of the lengths and the scalar

products of the vectors Kﬁ, ﬁﬁ, and iﬁi Of course, the angular momenta
involved can be coupled in a different order., The proof is analogous

to that of (13.8/9).

The strong theorems again result from the following restrictions:

A) Every four-centre integral over arbitrary, spherical orbitals has
the structure (13.13), where the rotational invariants depend on
AC, BD, and PQ only., This in general causes unlimited sums for ji,
32’ and j3- )

B) Every four-centre integral over arbitrary, spherical orbitals has
the structure (13,13) with the limitation Jg+iptiz <L +ly+l 41,0
This in general makes the rotational invariants depending on the
scalar products Ka-ﬁi, EEZfa, and ﬁf-fa.

Again the GTOs occupy a special position, In the case of this gystem,
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the formulae of type A) are restricted by ji+j2+;j3<2na+la+2nb+1b+2nc
#1 +2n4+1,, cf,[45-47], Thus the integrals with n =n, =n =n,=0 are
covered by both theorems A) and B),

The proof of A) can be achieved by orthogonal expansions with re-
spect to the centres P and Q or by the addition theorems already men-
tioned on page 55, The eq.(5.18) of [49] corresponds to (13.13) with other
other reference vectors and another coupling of the angular momenta,

The proof of theorem B) is sketched in appendix 2,

In the following, we shall regard the rotational invariants as known.
Examples are given in the appendix 2 and in section 2%,3/4. But it must
be said that the theory of the invariants according to the theorem B)
is still unsatisfactory and requires further investigation,
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14, Multi-centre integrals and molecular symmetry
14,1, Preliminary considerations

If the symmetry is reduced from the rotation group 0(3) to a mole-
cular symmetry group G, the WET is valid with respect to both groups
and the both reduced matrix elements are interrelated by (2.82). We
repeat this relation for 0(3):

+ .
Catmy Joygdims> = Gl TH A G iy 2) (14.1)
With the definition
ldpy> = [n18dp,> = ¥<im, [16dp > fnim > (14.2)
the WET reads in G:
Lyeq ! . Lyc . a*c eyo
<¢dpd|Tpc |gep, ) = §<§dHT lige> (PchPg (14.3)

where ¢ has the meaning ¢=(nls). (2.82) then readgLin this case:
1750 j
/.
Gallr™lige), = <p1uTLnni>°Is(3+v e (14.4)
c eloc

Exactly corresponding relations must exist for the structural for-

mulae of the multi-centre integrals discussed in the preceeding section
as generalizations of the WET, These relations are needed, if the uni-
versal integral formulae are introduced into the calculations of sym-
metric molecules,

As a preliminary,we prepare the point group analogues of the sphe-
rical harmonics and their combinations (13.7 and 12), As a consequence
of section 12, the standard functions <F'st.aaﬁ> offer themselves. In
correspondence to (13,7/12), we define the standard functions of seve-
ral variables:
<§;,Félst.(aiaiazaz)sbpb>

+,_+ (14.5)
= Vdimb-Z(gbz:;z)B<E;fst.aiaip£><f;'st.a2a2pé>
<Ei'52'5§‘5t'(“1a1“2a2)5b“3a§7§Pé> (14.6)

_ S(C basyy >
= Vdime Z(PchP;) <¥;,r2|st.(aiaiazaz)ﬁbpg><?glst.a3a3p3>
According to (12.12), the s.-a, solid harmonics can be expanded in

standard functions:. L
<f'sol joap) = ZS&i(?)(flst.aaé} with Sgg(f) = rJ-Rgg(¥) (14.7)
a

The corresponding expansions of the functions (13.7) isi

> T 3faz
&1, l501(3,3,)37bp > = V(23+1)/dTmby__ 3__1s|v 0403
@;0583;8 b a,8:/f (14.8)

wadt O (2 Vi 02 (VR 7
Sa:a;(ri)saiai(r2)<?1'r2|5t'(“1a1“2a2)5bpb>
and that of the functions (13.12):
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<F;.? ,fgisol(a'ia'z)Ja’3anpc>

Y(ZE+1)(27+1)/dincdimbe I TiE 1s|n 7'
+ + ilmcdim S|T O«0. ’STCTU
o« lalrﬁy b a%a? B cb a; (14.9)

.33464(5’)szoz(r )33363(r3)< 1,r2,r Ist.(a 2y, a,)Bbazasyep >

14.2. The particular integral formulae
Now we are prepared to discuss the multi-centre integrals with re-

spect to molecular symmetry, In each case there are three steps: The
formalae of section 13 correspond to (14.1) and it is our task to wri-
te down the multi-centre analogues of (14.3) and of the interrelation

(14.4).
The point group analogue of the two-centre integral (13.3) is:

(a9 ap, iTL7°IB@ PP

%E Z:VHIEEK@ a"ABee,TL7°ﬂ¢bﬁ>6n- e ¢ d)n(a d b)‘S <K§Ist.eepe>
|

(14.10)
ce PePoPg PoPgPy
and the interrelation of the invariants:
ee Lyc
- Lo allAB*T, 1 " llp, b
< a ’ b 6n j 1 J
= 2 V4n(2J+1)/dimd~Is |o Y 1] Is|a 1 &
JJjot ete d atd b

Because of the functions Sgg(AB) the point group invariant is no scalar
of the rotation group.

The derivation of these equations is as follows, Because of (14.2»
the interrelation of the integrals (14.10) and (13.3) is given by:
<o 42p, 1727V Bo, bo, >

L
=54 aapail ><@M‘Lycpc><jbmb,lbﬁbmb><}nalamalTM'Bnblbmb>

Using now (2,72/73) and (14.7) and comparing the result with (14,10)
we get (14.11).

The point group analogue of the three-centre integral (13.8) is:
<Aq’a*"Pa x5t 3oy o>

8d,~ne c 2 *b cle

5 Ydimc'{ag, allAB""PC “Bq)bb)e7 DDy p) <§§:§3'st.(6dne)ycpc>

eycd
and again the interrelation of the invariants-

8d e; c 2L+1
<A¢aa"AB pcY "B¢bﬁ>e 4n§;: Z:: dTme 18

(Kﬁ)sz(Pc)<An 1,1l 48 pcI||Bn, 1, DT
These equations again follow from

<A¢aapa‘r61'B¢bbpb> = Z(jaaapa'lama><ibmb’lebpb><3nalama|r61|Bnb1bmb>
using the expansion (14.8).

(14.11)

19 1y jo, = j oL J
6see(AB)<:nalauAB Tl 1>

(14.12)

1, L+) (L Jtit
a B v Is|lp o7
cle a dtet

Y (14.13)
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With reference to the vectors AC and BC the corresponding formulae
read:

<§¢aapa,rc ’B¢bbpb>

£ b (14.14)
= Z = Vd1mc<§¢aaHAC¢ BC¢th¢bﬁ>gY(; B, ;)€<Aa,§3'st.(¢fdfﬁycpc>
with 1t
i c onay [Lalud’) (7L
A aHAC¢fBCd B, S = 4ny _ % 3T Is a 6 by| Is{b 7 KA
a b 7ey %;: c f“ (14.15)

-sig(AC)S¢EKBC)<Ana1a"AC Bcllanblt}L

In section 13,we have criticized that the three-centre integral for-
mulae of type A) can contain infinitely many rotational invariants.
This problem does not ocecur in the case of molecular symmetry, since
the sums in (14,12 and 14) are finite because of the limited number
of point group representations, But in truth the problem has only been
shifted, since according to (14.13 and 14) the finite number of point
group invariants is expressed by an infinite number of rotational in-
variants, For type B), of course, this problem does not exist.

In conclusion,we carry out the corresponding determination of the
two~electron integrals. The parallelism of rotation and point group
yields the analogue of (13.13): _
<A¢aapa’B¢bbpb'rzélC¢ccPc’D¢ddpd>': 2—57'2:: Vdime-dime+dimg'

OTEEeecy (14.16)
+ [(A9,2*, Co c)eell (Ac™ By BDM= 12 ) PIpqMs s (B9 b*, Dpya) e &

!

(a ° e) (b " e)e p pl g)0<ﬁ ﬁs l_’b'lst-(n1h1n2h2)¢fn3h3‘rgpg>

PoP.Ps PpPyP%
The point group invariants of this theorem are related to the rotatio-
nal‘invariants by:

[(ap,a ,C¢cc)eeu(Ac"4h'BD“2hz)¢fPQ"3h3n(3¢bb+,n¢dd)ee] g

1 1h 1
- . ZL+1 21+1) (21+1) (2J+1), bgdy
T2, oy T ) Tt role5yed | 7|26,
J 37 jz 1ttt L J%53 (14.17)
oIs g h; Is|4, 2 v, | Is|Y p+h1 3”“‘(KE)SJZEZ(BD)SJ3E3(PQ)
4 eeg ¢} T

L
-{(Analg,Cnclc)lu(A034anz)JyQ33u(Bnb1;,Dnd1d)1]
This results from (13.13) by the adaption to the point group symmetry
(14.2). One then uses (2.72/73) and the expansion (14.9).
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15, Ab initio determination of the polycentric invariants

Using the integral formulae of section 13 and their adaption to the
particular molecular symmetry in section 14, we now can determine the
polycentric, reduced matrix elements BRM, TRM, and QRM.

15.1. The proper two-centre integrals

G01ng to calculate we have to rewrite (14,10) for the centres A
and Bk Noting that A, Bk Bk-A = -S Kt We get with (12.19):

c
<A1¢aapa!T IBk¢bbPﬁ>
- ee efe din,a*d bvy6 4 i

= %;négydlmd<@aaﬂ S=%,T Iwbﬁ> (p . p& (p P p) {se}<sik'st.sepe>

Inserting this into (4.,10) yields the BRMs expressed by the point
group invariants:

dsd
(49, aliT®l B, b) 50N
a b¥/See >d (15 1)

{c den}{a bd§}VaimE'Zc(Sse st. s){se}<¢aau Sse,T ot
Using now (14.11) yields the flnal expression by the rotational inva-
riants of the general two~centre integrals:

(4,2l T*YCYBe, 0) 300 = (o1)tatlo+D Zc(SEe st. &) (2T -s32(5})

See ( )
15.2
3fatL 1 e D1 3
*Isjo,v.y]| Is a B T n 1 II-S:j lln, 1
etate n < a 4 b b>

This completes the ab inition calculatlon of the two-centre matrix
elements, In the next step,the matrix elements of the s.-a, MOs (5.1)
or (11,6) can be expressed directly by the rotational invariants. The
abbreviation £ now includes the main and the angular momentum quantum
numbers, i,e. £ = (Add,¢aa)& = (Add,nalaaa)&. The s,-a. MOs are:

,ﬂépa> = %: K(&épa,Aiaa,aqa)'lAi¢aaqa>

9a

=3 Z:K(aap , Aide, »20,) <1 a'laaaq;>-'Ainalama> (15.3)

19,0,
I/
= g; M(aapa,Aiad,(aa)lama)']Ainalama>
The coefficients M(...) relating the s,-a, MOs directly to the spheri-
cal AOs have been defined in [51], eq.(7). From the orthogonality re-

lations (2.26/27), (2.70/71), and (%.6/7) follow those of the composed
coefficients M:

$W(dp, , ardd, (aa)1m) n(Bbpy,, A1f8, (50)1m) (15.4)
m
= 6(&96)6(515)6(Paspb)6(d961)6(a'l b’)é(a,B)é(a,b)
ZM(aapa,Alcx'a,(aa)lm)-M(aapa,Ajaa,(aa)ln) = 8(i,J)8(m,n) (15.5)

aaaaaapa
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The matrix elements of the MOs (15.3) thus are given by the WET

oo ITT° 188> = TQRITTEBE), (G ¥ (15.6)

with the reduced matrix elements
. N . .
HalT TeUREy, = §S<na1an-sj,TI‘IInb1b>J-GEo4(Aa,¢b,Lycu,J;js) (15.7)
and the geometrical factor:

GE04(Ké,$5,Lycu,st) = (-1)1a+1bL-V4n(2J+1)°g%: > C(See st.€)

neeote’

it 11J (15.8)
-Séé(§>) eIs o T+Y Is|a B | GEO, (AaBbe, «daagdfbp,dsnsee)
cin a*b d/s

The paper [51] dealt with the overlap matrix, i.e, the matrix ele-
ments of the identity operator, a special case of (15,6-8).

15,2, The nuclear attraction integrals

For the determination of the TRMs,we have to repeat (14.12 or 14)
with respect to the centres K;, ﬁi, end f?. This yields an invariant
<A¢aa“AlBk PikCneHBwbﬁ>° with'?'k=(0211+o%§;)/( cz). Because of the
invariance the vectors A, Bk and P Ci can be replaced by those of an
arbitrary, equivalent triangle AxB and P 5 . In order to eliminate
the misleading indices ikl (or xyz{ we replace them by ABA and P ‘EA,
where the index A indicates the set of the triangles under considera-
tion, Inserting now the specified relation (14.12) into (8.7) then
yields:

- - od e c = i !
(a9 allcr 4 Beyb)g yo= Vaime an(é(AcpaallAB A PCE By Y2 . & Byc,st. éd?ig ) o
with the expansion coefficients:
e [

(Ayc st. édney) E (Aycn‘A ) o iI;T(jilk & i,Pikcllst.(édne)zggzio)

These coefficlents result from the expansion
—= = AACB

(Ain,Pikclist.(6dne)ycn> = §ci(ﬂyc,st.6dney)gavziﬁ5t(jilk)(A fAycn)

and are the analogues of (12,15).
On the other hand,the insertion of (14. 14) into (8,7) yields:

- £ n0f
(g aliCT iqubb)zYc Vdim Z;d;E<A¢aaHAC% BCX |B¢bb>cf-czalyc st. wf? g. 2)
with a different type of coefficients:

& (Ayc, st.ofety) = E(Amn]ﬂ WZB)= (ﬁgﬁwqc_{'@ll“'(“’fq’lf‘nlcx(?s.13)

The eqs.(15.9 and 12) show that different types of coefficients have
to be calculated depending on the reference vectors in the integral
formulae, Therefore it is absolutely inexpedient to allow the parame-
ters Gy and o3 in the weighted mean §;k to depend on the individual

15.11)
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orbitals at a certain centre., Problems also arise, if approximative
formulae require other reference vectors.

Inserting now (14.13) into (15.9) and (14.15) into (15.12) traces
back the TRMs to the rotational invariants, With respect to the refe-

——
rence vectors AC and §8}the result is:
(ap alicr™dy BP,D)E yo / (15.14)
1 L 14
GEOg (A1,aa,B1 8D, Clyce,11T) - an,1_lIACABC Bny 1,

with the geometrical factor:

GEOg (A1, aa,Bl,pb, chyce,111) = 4n(2L+1)dime” 1/22 %&: cz(ﬂyc st.pfetY)

111 1t L 1"1’+ (15.15)
Isa® bp Is (K3 S Y(BE
a,p P 1’* N f( d

Finally the matrix elements of the potentlal operator (8.10/11) with
respect to the s.-a. MOs can be determined:

fap, [V lBan,> = LBIVIESD Aaimd , (15.16)
= V1 /dimé-E’_"‘M GEO (A3P4C, 17DA) {an, 1, IIACHBCY iBny 1, Y

with

GEO, (44BaC,11L4) = :GE%(AI aa,B1,Bb,CAyce,11L) (15.17)

Yee *GEO, (AaBbC, «dgBa84, Ayce)

15.3, The interaction integrals

In the same way as before,we restate (14.16) for the centres A
1'3’ Cp, and T. The resulting integral is equal to (11.1-3) and the
1solat10n of the QRM give the expression in terms of the p01nt group
invariants, Again we introduce the vectors AC?, BDg, and PQg(lnstead
of A, Ck’ Bng’ and Plejl) referring to an arbitrary member of the
set ¢, The QRMs are:

[(A¢aa+,0¢cc)seﬂr'%M(B¢bb+ Dwdd)sgqo =
§ % Vaimg'c (8zg,st. (Tli 1Mo z)q’fn3 37) (15.18)

[(AcpaL * 09 0)eell (A ™ BDER2 ) PrpqlsPo|| (B, b*, Dpga) ]S

where the expansion coefficients are given by:

- 4

&’ (_/SLTE, st.(ﬂihinzhg)CPf;;hf) (15-19)
_ ABCD > > > I}
—Ejg(?"tgpg'%.) '3 Fx (I'i iK1 )<Aick’ Ble ’ Piijl ' st.( Tlihinzhz ) <an3h3Tng>
These again are obvious generalizations of the coefficients (15.10/13)

and (12,15), They likewise depend on the system of reference vectors
within the pseudo-tetrahedra,

Inserting now (15.18) into (14.17) traces back the QRMs to the ro-




tational invariants:
[(Aq)aa+,Cq>cc)eellrzé(|(Bq;bb+ Dwdd)e'e']gtg (15.20)
: EGE%(AtpaaCcp ccee, By, bDp,dee, sSTgs 3, 7(11)1)

[(Ana 2 on 1)Ll (ack Bd% ) TRod2 (1(Bny 1, Dn g1 ) 11®
with the geometrical factor:

2 (21+1) (2T+1)( 1/2
GB0g(0) = (4m) P2 fame T ;;[——M%—l%—?] (15.21)

1+101 1g1d1/ J it 1ttt L Ity
> Isla,y 4] Is|p 84 sl 1:4,_154_ Is|{d Z"_y+ Is 7w, m
Y aces b*d €l \f nh)le letefg g £'hy |7

c (S’TG’St (111 1”2 2)¢f‘03 3"7) 534 Jua (ng—)s']‘Z T2 (BDJL)Sj’n;(PQ?)

And finally, we determine the two-electron matrix elements of the
S8.-a, LCAO~MOs. From (11.13) and (15.20) results:

[(K+é+,¢6)6t|lr ||(3+5+,¢d)6’t] }: gGEOB(AaQ*,cG ﬁb]étiet;j J1)1®

~[(an 1}, 0n 1 )1"(A0r mndt ) T2a Il (B, 1}, Dagly) TJ(is.zz)

with the geometrical factor:
GEOB(,(a¢c6 Bbpdet;j. J(ll’)LB") (15.23)
E FGEOB(seJe’o G1g). *GEO, (A9,2Cp cee Bq;bthpddee o§tesd. J(ll)L)
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16, Wolfsberg~Helmholtz and Mulliken approximations

Having cleared up the interrelation between the molecular invariants
defined in the first sections and the ab initio rotational invariants,
we now consider approximations like those of Wolfsbérg-Helmholtz and
Mulliken., These approximations can be discussed from three different,
but conmnected points of view: namely as approximative formulae for dis-
tant centres, as a miniﬁization of the number of semi~empirical para=-
meters, and as an interpretational aid to split up the molecular ener-
gy into a quasi-classic part and the "remainder™ [52].

At first,it is a trivial qequirement, that an approximation or para-
metrization should not depend on the position and orientation of the
molecule in space, i,e, that it should be invariant to translations
and rotations, This applies in particular to the symmetry operations
of the molecule, But the existence of a relevant literature suggests,
that this trivial requirement is by no means a matter of fact [53~55].

The required invariance is self-evident, if the approximations are
sujected to the principles of form stated in section 13, if especially
both sides of the approximative formulae are tensors of the same spe-
cies, This condition is not met by the usual form of the Wolfsberg-
Helmholtz approximation:

f~1
anglom, [=5" |Boylym,
-1 -1
= kny1 m [Bupl m pfdn 1 m, x5 Bn gl m e Brplym x5 (B ym )]
The left side and both swmmands on the right transform according to three
different product representations of the rotation group. This demands
a meaningful modification, which for instance can be achieved by taking
‘the mean with respect to the magnetic quantum numbers, There are two
possibilities:
-1 = k . ! / -1
alama’rC anblbmb>- pares %,(Analama’Bnblbmb><Bnblbmb'rc ‘Bnblbmb>
. b (16.1)
. ! -1 ¢
+ panes gf@nalama|Bnb1bmb><§na1amalrc |An 1 s
a

or
-1
Q&nalamalrc [Bnblbmb> = k<Ana1ama'Bnblbmb>
1 -1 i -1
’ ['ZIa'+'I'§<Ana1ama'rc [4ng1m,> + ?Ib+1’§<3nb1bmb'rc [y 1ym D]
a b
The first approximation depends on the angles between the vectors Eﬁ
—_—
and AC or BG respectively. The second one is simpler and leads to a
smaller number of.parameters, Furthermore it fits with the reference
vectors AB-PC and we can use the coefficients (15.10), We therefore

prefer (16,2) and determine the corresponding approximation of the
rotational invariants. From (13.8) follows;

(16,2)
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' 0,0 0
g (nglm frot)angl m > = VBT AT ¢n,1,)l0°Ac0lAn 1 )
a
= Y2+l il >
with the ordinary, reduced matrix element of (13%.5), If we insert this
into (16.2) and compare the result with (13.8), we get:

L .
an1 148720 Bn, 1,5 = 8(5,0)8(5,1)<r L 1 4B Iny 1 D0 (1) Pt
AN TG 1> + AN TG L0 1))

The approximation with respect to the angular momentum basis is the
most efficient and selfconsistent. But a similar approximation is pos-
sible on the lower level of the point group invariants (section 14) or
even on the level of the TRMs, The latter presents itself, if the para-
metrization shall not require spherical, atomic orbitals, Approximating
(8,1) in the sense of (16.2),
<Ai¢aam|rai|3k¢bbq>‘ = k<@i¢aam'3k¢bbq>

[ar——{<}1¢aam|r i'Aiwaam> 31—5z<$k¢bbq|r ilBkwbbq>]
yields for the TRMs-

(16.3)

(16.4)

ASC
(49,2ll0z" Y Bkgyb)5, , = WLECGHZLCE 3 (1953180 ) 5o PLS” (1,8 1)1 (16.5)

-%;(i/VZZXCXSdimf)-(waxHCr'iHX¢xx)XCXii,

where the sum takes the values Xx = Aa and Bb, ACA and BCB are degene-~
rate triangles.,
The Mulliken approximation of the {two-electron integrals can be
treated in the same way., Again the approximation must be changed into
a correct tensor equation, From the several possibilities we take the
simplest one:
-1 + -
[ 10m, ,0n 1 o, 233 By 1w D gmy ]= ing 1 m, fon 1 m o> Gom L ymy [ omg 1 gmed
1 + -1 *
(1/4 >§ynr;:fmr;n: [anlxmx’xnxlxmx T e (TETH
Xy
where the sums take the values: Xx = Aa, Cc and Yy =‘Bb,Dd.
This ansatz together with (13.13) leads to the following approximation
of the rotational invariants:
[(an 17,001 )1||(ACjiBD32)JPQ33II(Bnblb,Dndld)l]I' = 8(34,1)8(3,,1)
+5(3310)8(7, L)(-1)1a+1b+1°+1d+1+1v7'(‘—5T_1 2T+ (2001 lacHin 1 DY
“Gpl, |BD1||nd1d> (1/4)%\/-{7(-5——17@1—-{7 (16.7)
- [(xn 13,301, )00 (0°0%) °4B°ll (¥n 17, ¥n )o]°
As in (16,3), most of the invariants (parameters) are put equal to Zero.

wWithout reference to spherical orbitals,the direct approximation of
the QRMs is as follows, In (11.2) we put:
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[Ai¢aa m,Ck¢ccp’r12lBj¢bb n,Dlyddq] <§i¢aam|0k¢ cp) @i, bn |Dlp,dg>

(1/4);;1'_‘ Eﬂm ;[Xicpxx t Xicpxxtlr 2,chpyy u Y;Jcpyyu] (16.8)
and get the approximative TRMs:
[(a9,8%,Co ) eellry3l(Bo b* , Dpga)ne],
ERUECTIRITAY. (06,2 090)5 o (B0 D062 g PLS” gg E (16.9)

(1/4); VI7Z(XTXY) dimx-dimy [(Xo,x ,chxx)illrizll(chyy ,anyy)i]xmu

with Xx = Aa, Cec and Yy = Bb, Dd., XYXY are degenerate tetrahedra and
thus only two-centre invariants occur.

At this point a comparison with a LCAO-MO parametrization of tetra-
hedral transition metal complexes (i.e. a MO extension of the ligand
field theory) [56) may be of interest. The authors calculate the two-
electron integrals of linear combinations of s,-a. MOs:

frép,> = c¥(K)+|hép > + cV(B)-|Bop,) (16.10)
where ’Aépa> and |3ép;>are givern by (15.3). Set A means the central
ion and set B the ligands, They have to discuss the delocalized inte~
rals
¢ Qr48P,57,5, T73 | 156P¢, 7,dP4 > « (16.11)
They do not examine the invariants of these integrais according to
(11.8/9),but decompose (16,11) into one-electron integrals using the
multipole expansion
7l - §(4n/21+1)(r}/r}*i)@|m>¢m|?2). (16.12)
Since the delocalized integrals of such radial functions are not cal-
culable, only bilinear combinations of the can be taken into account
(tables 11) thus undoing the decomposition, ,

The bilinear combinations then are parametrized using a manipulated
population amalysis. Inserting (16.10) and (15.3) into (16,11) yields
localized multi-centre integrals, which are subjected to the Mulliken
approximation. The result is a long list of separate, numerical coef-
ficients (table 11 again), In order to preserve the point group inva-
riance ad hoc average of the approximate integrals have to be taken.,

On the contrary by inserting (16.9) into (11.13), we get a general
construction of such coefficients for arbitrary symmetries. Ad hoc
averages are not required, not even for orbitals higher than p (cf.

4.
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17, Floating orbitals

A possibility of avoiding the algebra of higher angular momenta is
the exclusive using of s-~orbitals floating in space. The invariants
of the preceeding sections depending on the higher gquantum numbers thus
are replaced by a multitude of multicentre s-integrals. The task of
" the polycentric algebra then is to collect these s-integrals in such

a way, that each independent integral occurs only once in any molecu=~
lar invariant,

There are two ways: of -proceeding: The s-orbitals can be distributed
freely in space without regard to the atomic positiens and then are
combined to s.~a, MOs. In this case we‘get high and non-structured mul-
tiplicities of the induced symmetry species, On the other hand,the s-
orbitals can be grouped around the atomic positions simmlating p-, d-
etc, orbitals, Only from these simulated AOs the s.-a. MOs or VB func-
tions are built up. The attachment of the orbitals to the atomic cen-
tres induces a structure into the multiplicity problem, which is acces-
sible to the polyhedral algebra.

To begin with,we simulate orbitals of the symmetry species a by li-
near combinations of s-orbitals. For this purpose we use one, two or
several equivalent positions ﬁa as required around the centre of sym-
metry. The s=-orbitals are localized at these positioms:

(3—171,03) = (FJulesd (17.1)

¢ is a discriminating index, for instance an orbital exponent. Accor-
ding to (5,1) the s.-a, orbitals at the centre of symmetry are given

b : r—p| —

y <'r"float anapa>= E(r'Ulos)(U]_anapa) (17.2)

These compound “AOs* now are shifted to the various atomic positions:
G’Aiwaapa>=_<i-’-ﬂ;|float oUaap, ), (17.3)

where now ¢ _= (float oUa).

The invariants of the multi-centre integrals over these shifted or-
bitals result from the invariants of the integrals over the constitu-
ting s~-orbitals, As an example,we explicate this for the BRMs. We ex=-
press the functions (17.3) directly by the twice shifted s-orbitals:

<4,Ai¢aap;> § <r-Ai- 1|cg>(ﬁ>|ﬁaapa)
= Wﬂ‘rﬂxﬂdms)(ﬁ’lmaapa

Ar are the positions of the s-orbitals and the topological matrix re-
lates them to the atomic positions A

We now come to the two=centre matrlx elements of the orbitals (17.
3/4) where ¢,=(float o)

(17.4)
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A _g U/
dbigyep, |15 ]Bkcpbbpb> ;;_EETZ(-AAU)Z(-BBU:) oA o (B _

(Uaapa'Ul)(U lUbbpb)<}rcs|T° [ﬂ%c s>
The integrals on the right are a special case of (4.6):
c Cpwf - -fBv, = (17.6)
<Arcs'T lﬁ%oﬁ} E;:(AGS“T HBdB)V . -VZ(=&BV)/dimce( rst)(VtIVycpc)
In order to determlne the BRMs,we insert this into (17.5) and the re-
sult into (4.10):

(49,allTCNBe, ) 30T = dimd E’v \Z(~ABS) Z(~HAU) Z(~BBU) Z(~AB7) /dimo.
S

See ~ T $ v .

a b'dje(d cteyy, (-ABS)  (~AT) (-B‘BU’ -A’ﬁv

papbpd P4PcPe ril rst( 17.7)
- (seep, [5,) (Vaap, |07) (T {ubbey ) (7 | Vyep,) (Hoslin® [Bos)

We now inspect the sums for i, k, r, and s of the four topological ma-

trices., Because of the triangular relations (3.1» these sums do not

vanish only if §. +U1¥ﬁ'+V or'ﬁ’éﬁ’—vp-s . We decompose this quadran-

gular relation into two tnangular relatlons by introducing the egde

vector'iqéﬁ;~ﬁz. This edge vector is the distance of two s-orbitals

before their shift from the centre to the atomic positions, We there-
fore get the topological relation:

&'—VZ(-ABS)Z(-AAU)Z('HBU)Z("ABV)'T(-ABS) (-fﬂ]) (-ﬂBU) (-ﬁg) (17.8)

s(-AAU)5(-ﬂBU)<,_‘vz(-wx)z(-vsx)' -c("{}g) @Sy

where 6(-AAU) = 1 ,1if there are triangles of the type -AAU,and 6(~AAU)
= 0 otherwise, This relation reminds of the rule of de-=Shalit (2,54)
with a simple, “topological 9) symbol”. We insert (17.8) into (17.7):

(49,217 Bp,p) 300 = dimd% Y"‘ 8(=440) 6 (~EBY )Y Z(=U0K) Z(~VSX) /dimc

See ~

(;a;bggé(gd; ;)ﬂ ( Egé) (-VSX)(Ssepels )

-(Uaapa|ﬁ;)(Um]thpb)(V;lVchc)(AcsHT “ﬂaé)Vyc

To the sums for 1 and m we apply (6.14) and collect the remainder by
(6.6). This yields the intended relationship between the BRMs:

dasé ’ - 7
(A9, 2l T°IIBp, D) 500 = Ex pzyé(-AAU)S(FB'BUI)V'Z(-UUX)Z(-VSX)/dimc
UUX
apfp
abd

sz (17.9)

*PIs PIS( T E R,
5 e d*

. (dosliz®lIEck)y.
The first polyhedral isoscalar characterizes the topology of the un-
shifted s~-orbitals at. the centre, the second one the relation of the
atomic distances S to the true distances V of the shifted s-orbitals,
The BRMs on the right, of course, depehd on the distances V, too, Ace
cording to (4.10)/the BRMs of the s~orbitals result from a simple sum
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of the integrals:

n

ol Cy ' !
(AosfiT "BGS)VYC

Vi7dimd~§£§ (Vycpc,V;k)<§ios|T;c’ﬁké€>
c

Vi?dimc~z(:ﬁﬁ%)z (Vycpc!V;;)<gﬁos|T; 'ﬁk&é},
P ) c

¢ .
where in the last line the indices of‘V;kélz-ﬁi are arbitrary.

In the case of sealar operators,follows from (17.9/10):
(Ap,aliTIBy, D)8, , = %,;5(-;&11)5(-3‘51{) VZ(=G0X) Z(~VSK) Z(~ABV)
L jwuzx vsx)|
* @ios'm'B&fC{ﬁ),

a. B p € B,
a e lee

(17.10)

(17.11)

*PIs PIs

where KZQ§Z must be an edge of the type V,

By (17.9) the fact is emphasized, that the existence of molecular
multi-centre invariants is not restricted to the linear combinations
of spherical atomic orbitals,
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18, Overlap- and structural matrices, orthonormalization

The following two sections concern the connection of our new results
with the conventional treatment of symmetric molecules, As far as the
MO picture+)'is concerned, we can be brief, Only the VB picture+ will
show again typical multicentre aspects,

The constructing of many-particle functions and their matrix elements
is simplified in both pictures by a preceeding orthonormalization of
the one-particle basis, Since the original AOs are not orthogonal, we
have to turn over to the delocalized, kanonic MOs or to the localized
Lowdin AOs [57]. Apart from series expansions with respect to non-dia-
gonal elements,the diagonalization of the oﬁerlap matrix of the origi-
nal AOs is necessary for both methods. By constructing the s.-a., MOs
(5.1) the group theoretical preparations for the diagonalization are
done [32). Because of the orthogonality of the MOs belonging to diffe=
rent symmetry species and components,there remains only the diagonali-
zation of the invariant partial matrices according to:

v1/dimé-§«é||¥é> -u% - = di-uio : (18.1)

The meaning of the quantum numbers is given by (11.6) and the sum runs

over all sets of equivalent centres, too, a represents all occuring

symmetry species. di are the eigenvalues and uao the components of the

eigenvectors of the matrices, The reduced matrix elements <Aa|$é> re-

sult from (15.7), if T is the unit operator,
The kanonical MOs then are given by:

Jian.cdp, > = T (4742 a5 oo, >
= % (do)"i/z-ulooM(éépa,BkB/é,(Bb)lbmb)-‘Bk:nblbmb>
. _

.

(18.2)

Since the eigenvectors belonging to d::o express the linear dependen~
cies, these cases are omitted in (18,2).

+)Ac‘cording to the usage of the quantum theory,unitarily equivalent
formulations have to be termed representations or pictures. The Russel=-
Saunders and the jj coupling, or the strong and the weak field picture
of the ligand field theory are unitarily equivalent only if including
the full configuration and term interaction. In the same sense,"MO pic~
ture” means the construection of MOs with the subsequent full CI calcu-
lation,and “VB picture™ includes all AO configurations. Omissions and
approximations, of course, yield different results within the only ba-
sic theory, the quéntum mechanics,
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Because the eigenvalue problem (18.3) contains invariants only, the
eigenvalues are invariants, too., The indirect interrelation between
the reduced matrix elements <ﬂéﬂﬁé> and the eigenvalues di can be made
some more explieit by the following sum rules:

z(da)n - tr((sH®)  with Sgg = <AalIBE>Naimd’  (18.3)
1f s% is an m-d1mens1ona1 matrix, the first m equations of (18.3) fix
the eigenvalues, This has been pointed out long ago by Wigner [58].

If we take the sum of (18.3) with respect to &, more stringent sum rules
result immediately related to the rotational invariants of

+o4
n1m (Bnylom > = z V'4n'<na1allABJllnb1b>J(%l:§I i};)(ﬁl sol IM>(45 4)
a special case of (13,3%)., The first sums are:

> 6 = S Gl i 0°lngL, 2 (1) LT (18.5)

aa
dé 2 = - . 2J. J Jyz .6
R - e e e g G

Similar rules apply to the eigenvalues of all two-centre matrices,

If we assume a more or less “effective™ one-particle Hamiltonian
for the electrons of a molecule, similar sum rules result for the one-
particle energies e belonging to the symmetry species a:

z(ea)n = (D) = tr((H 858-1ymy (18.7)

The Hamiltonian matrices are given by H _<?an.oapa!H!kan.rap > and
HKB—<xa"Hu$a>¢Vdima. Because of (18 1) the 1nverse overlap matrix is:

(574) 5 = L s (45 &) tead (18.8)

For a preliminary, energetic ordering of the molecular orbitals,a
Hitckel-like approximation of the two-centre matrix elements <§Aina a a’
IH'Bknblbmb> may be useful, This is an approximation of the type H =
«I + BM, where M is a structural matrix representing the coordinationms,
cf [52] section 6.,2.2 and [59)]. The cited references apply only to s/pn-
orbitals and equal atomic distances and we have to generalize the struc=-
tural matrix by including different distance vectors and anisotropic
orbitals, A characteristic of the Httckel approximation for n-electrons
is the independence of the matrix elements from the position of the
involved atomic centres, This means that the “topological operator”
ig regarded as being invariant to translations and rotations. This as-
sumptionAsuffices to fix the form of the structural matrix in accord
to the principles of section 13. In analogy to (18 4) follows:

a a a'ToP'Bnblbm’b> ZV i @ "'AB TOI’"n”blb> (ma'M b)<AB'sol 'm>(18 9)
The rotational two~centre invariants <ﬁ 1 H ,Top"n 1b> are the ge=
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neralization of the Hiickel parameter B, Because of the triangular re-
lation tla-lbls J€1,+1, and the parity rule 1 +1,-J=0 modulo 2, the
number of the invariants in (18.4 and 9) is equal to the ¢=-, f~-, 6~
etc, bonds of the orbitals at the centres A and B. This interrelation
is made explicit by choosing the distance vector AB parallel to the
z-axis, This produces the standard integrals [60} or standard parame-
ters:

Topy(n,1,n,1,,4B) = <Ana1am'Top‘Bnb1b@>AB”Z

Sp(ngl nplysAB) = <Ana1amt3nb1bm>AB”Z p

where in the usual notation So=S4s Si=sn' So=5g etc, By inverting (18,
4 and 9) the invariants are expressed by the standard integrals:

J J o171 lp-m
<o, 101 B, Toplny 1, > = Y27+ +AB g(mao_mb)(-i) -Top, (n 1 m 1, ,AB)

J J ~Je1d 1 14—
& 1 48 01y = V2T 4B é(mao-mb)(-i) b=ls (n,1.n1,,48)

The Hilckel-like approximation mentioned above now can be written as:

(18,10)

(18.11)

inl m [H|Bkm, 1, m > = a(n,l,)8(4,B)8(1,k)8(n,,n,)8(1,,1,)8(m, ,m)
+ <Aina1ama!Top]Bknblbmb> (18.12)
Its eigenvalues belonging to the several symmetry species then for in-

stance follow from (18.7). If the number of parameters is still to
large, one might think of the further reduction,
<ﬁa1a"ABJ,Top"nb16>J = B(nalanblb,AB)(ﬁalaHABJHnblb>g ,

where the overlap invariants may be estimated using the Slater orbi-
tals according to the Slater rules.

The heuristical order of the MOs obtained in this way may serve as
a preparation for the Hartree~Fock-Roothaan approach [61]. Such a prep~
aration is necessary in the case of symmetric systems. The building up
principle requires in this case that we attach a given number of shells
with given occupation numbers to each symmetry species. This is 80, be~
cause the variation of the orbitals does not alter their symmetry spe-
cies.

For the purpose of the VB picture on the other hand, orthogonalized
atomic orbitals are of interest. An appropriate basis is that of the
Ldwdin orbitals [57]:

_ -1/2 .
|ow.Ain 1 m > = % Fm 5™ Von 1, m A 1 m [Brn 1om > (18.13)
b bEb a~a a
The problem is the calculation of the root of the inverse overlap ma-
trix., In analogy to (18.8),we first calculate Sa—1/2’ which is the non-

group-theoretical part of the calculation, Then inverting (15,3) by
(15.5)7we go back to the angular momentum basis:
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’- 2 ‘ e .
(s Y/ )Ainalama!Bknblbmb= éé;;; g;%;% g;;aM(aapa,Aldda(“a)lama) (18.14)

.uio(dé)’i/zué .M(Bépa,Bkdﬁ (BD)1my)

where we have to remember { = (Add, n1 aa)a. On the other hand,the
bicentric matrix s':"/2 is a special case of (4.16) and allows the fol=-
lowing representation by two-centre invariants:

-1/2 -1/2 i TN
(s ) (An_1_oal|Bn,1,6b)
Ainalama,Bkn 1bm o o b~b" "/ See (18.15)
1m j1 dgb;><ibdbpb,1bmb>(p B ;)6V17aime(sik'Ssepe) ,
where the BRMs result from the eigenvalues and eigenvectors of (18.1):
~1/2 ) : s+ +
s (An,1_ oallBnyl,gb)g. = ¥ Z(-ABs)dime.% 2 dima{bba 8} {abTes}

(18.16)
My —A B - K
' % a g+}a36n'PIs o % lo(d ) 123 30

In essence this is an inversion of (5.13).
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19, Many-electron systems
19,1, Summary of the occupation operator technigue

A concise description of symmetric many-electron systems is achieved
by using the occupation operators, as has been shown by Judd in the
case of atomic spectroscopy {62]. But the conventional approach to
this technique is quite fussy, There is no need of the detour via a
special one-~particle basis, determinantal functions, the occupation
number representation and so on, This applies especially to symmetric
systems, the states of which in general are no determinants at all,

We therefore define the creation and annihilation operators with re-
spect to an arbitrary orbital l@) directly by their effect on an ar-
bitrary N-particle function |[N§). Such a state is only restricted by
the fermion property:

(1K) (T qeeety|TD = (<1) - Goyeuumy V8D, (19.1)

where T(i,k) means the transposition of Ty and Ty

T(i,k)<r1...ri_1riri+1...rk_irkrk+1...rN'N§> (19.2)

= {TyeesTy g TyTs yoe e Ty gTiTp g e o Ty V)
The operators a*(gp) and a(yp) adding and annihilating an electron in
the orbital |@> now are defined by _
a*(9) |N¢) = IN+1§§> (19.3)
a(9) |¥) = [Nv-18¢> , (19.4)
where the (N+1)~ and (N-1)-particle functions are given by
(Tyeo ey, IN4160) = (1W)§(-1)N+1‘1T(N+1,1)<rN+1lq}(ri...rN|N§%19 )
<r1...rﬂ_1’N-1§9> = VK}E@‘rN><?1...rN,N§>d3rN (19.6)
The consistency of these definitions requires the proof, that
a*(9) and a(9) are adjoint operators, i.e.

Qus1¥]a* (o) x= <vlale) N1 (19.7)
with arbitrary |N+1¥) and |N§), (Assuming two determinants differing
just by the one orbital ]@} makes the proof at least very incomplete,)
The proof is as follows:

N+1¥la*(9) gD = (ANTH )%f...](mu EIE SN
f(-1)N+1'1T(N+1,i)(rN+1’@<ri...rN'N@d?ri...deru

Since the notation of the integration variables is arbitrary, we in-
terchange some of them:

= (i/mi);[o . o/(‘i)N+1-i [T(N+101)<N+1f'rio . .rN+1>]

‘<rN+1"P> &ye- -I‘NlNDdsri. eed’ry
Because of (19.1):
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= VN+1/:..jQﬁ+i?lri...rN+i><?N+i‘@><?i...rN’N§>d3ri...d3rN+i
and with (19,.6): '
= /.../<a((P)(N+1T) '_ri...rN><ri...rN‘disri...der = <a(Q))(N+if) 'ND'
which completes the proof. :
From (19.1-6) further follow the well-known commutation relations:

[a*(9),2%(n)] = 0 (19.8)
[2(9),a(n)], = O (19.9)
B¥(9),a(m], = Gl (19.10)

The last equation indicates the complications arising from the use

of non-orthogonal one-particle bases, For this reason, we have set up
the kanonical and the Lbwdin bases in the preceeding section and pre-
suppose an orthogonal basis (1|k>=5ik in the following, With respect
to such a basis,we have the well-known operator representations

T = E(i,t'k)a"’(i)a(k) (19.11)
for a one~particle operator and
G = (1/2)§<iklgtlm> a*(1)a*(x)a(1)a(m) (19.12)
lklm

for a two-particle operator. The essential point in the proof of
(19.11) is the expansion

N
!
T = Z;1= = §<ri'b¢,t’1>é~’ri>
in combination with (19.6/7). The proof of (19.12) requires the simi-

lar expansion of G, The matrix elements of arbitrary N-particle states
then are:

NEjT N = E(ilt'k)(l{ﬂa"’(i)a(k) Ing> (19.13)
(N@fGle:%%(ik]g[lm)(Néla"(i)a"(k)a(l)a(m) e, (19.14)

i,e. weighted sums of the one- and two-particle matrix elements. The
weight factors are called one~ and two-particle density matrices, If
the many-particle functions are built up by a systematic, for instance
recursive, calculus, the density matrix elements are pure geometric
and combinatorial coeffieients, cf,eq.(19.23). This scheme now has to
be transferred to the symmetrized MO and VB picture,

and

19,2, Group theory and occupation operators

For the purpose of the MO picture,we use for instance the kanoni-
cal orbitals (18.2) as a starting point. These delocalized orbitals
have the same transformation properties as the orbitals of one-centre
expansions and approximations, We therefore can take over the aufbau
principle of the strong field coupling, But in contrast to the atomic
spectroscOpy7there is no universal energetic order of the orbitals.
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This is demonstrated by the example discussed in {52}, page 444. The
chemical intuition is supported by the topological considerations of
the preceeding section,

The following is kmown from the literature [5, 8, 9, 16, 17}. Com-
bining group theory and occupation operators we follow the cited ref.
{62]. A brief indication concerning point groups is given in [6], The
main interest of the following repetition of [16, >17] is to get a mo=~
del for the VB picture, As in these references)the guantum numbers
are optionally single numbers for ¢ in Yy-coupling or double indices
for GxSU(2) in I'S-coupling (ef. section 2.9.). Thus there is no need
to mention the spin explicitly. The main point in the sense of this
treaty is that (19.1% and 14) again turn into interrelations between
reduced many-particle and reduced one- and two-particle matrix ele=-
ments mediated again by geometric and combinatorial factors.

The occupation operators of a s.-a. kanonical (spin) orbital (18,.2)
‘kan.oépa> are a+(kan.oépa) and a(kan.oépa). In the following,we do
not explicitly mention the index kan., because it does not affect the
group theory. The operators are (double) tensor operators transfor-
ming .in accordance with the representations 4 and a* (note the dag-
ger)., Since the proof given in [6] does not apply to point groups,
we show the transformation property of a(oépa). In analogy to (2.6),
the unitary operator representation of g¢ G is defined by

GeyoeeryglU(e) N8 = G&72ry.ung™ieg 0D (19.15)
We thus have:

U(g)a(odp,) [NE) = U(g) |N-1foip >

/q TyeeeTy D Ee ooty JUR) N-2dodp Ddry L L Py
Because of (19, 15)

= /c . o/‘rin . crN_i>é 1rio . og-irN_i 'N-i@cépa>d3 I'io . od3 rN_i

and with (19,6):

= [0 o/’rio . .I‘N_1><Gépa‘g-irN><g-iri. . og-irN,N§>d3 I‘ic . ‘der'V-l\T
With (19.15) again:

= /., ./'I‘i. PR _1><Gé,pa'g-irN>é‘i. . .I‘N,U(g) 'Nbdsrig . .d3 I‘N.V—I\T
Further with (2,17):

=3 anp(g) / /‘r coeTy_ j><<sanaL|r1\I><ri...r [u(e) |¥g)a’ry .. d®ry VT

and (19 6) again: :
Z Dq p(g)ca(oapa)U(g)lN§>

Since |N§) is arbitrary, we conclude:
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Ug)alaip,) = g p(8S-a(ede,)u(e)

or with (2.5):

U@t )ule)" = T 2t (e ataiay) (19.16)

which has to be shown,

The commutaters (19.8-10) now appear as:
[a*(oép,),a*(sbpy)], = [a(odp,),a(sbp,)] = 0
[a*(odp,),a(tbpy)], = 8(0,7)6(3,5)8(p,,Dy)

The &(o,t) does not result from group theory, but from the choice of
(18.2).
The many-particle functions are built up in priciple recursively:

IN+ieepe> {e}Vdime Z(a *at e)”-a+(oépa)]N6dpd> (19,.18)

with ¢ = (édoan). In order to select an orthonormal set from the func-
tions defined in (19.18), the godparent scheme in connection with LOw-
dins orthogonalization has been proposed in [16]. As an alternative
one may think of the seniority or gquasi-spin formalism [63]., Further
it is advisable to use (19.18) only within each shell and to combine
the (open or closed) shells afterwards, .¢f.[16] section 6., But the
details are not relevant in the present context.

If we apply the WET to the creation operators,we get-

<Neep |a+(oépa)]N-16dpd>»= Z(Neeua+(oé)HN-16d> (¢ *a d)n (19.19)
o .

(29.17)

N PP P53
Except for a factor,the RMEs are the coefficients of fractlonal pa-

rentage (CFP):
(Nee"a+(oé)nN-16d>n = (-1)y¥-aime. se{]N-iad,oé>n (19.20)

This relation shows that the concept of fractional parentage is
not restricted to certain recursive schemes, It makes sense in much
more general circustances., We give an extreme example: INeepe> may
be a strong field coupling function, 'N-iédpd>»a weak field coupling
function both built up from GTOs, and a+(oépa) the creator of a STO.
Because of (19,5)ythe CFP can be calculated, if the functions are gi-
ven explieitly., If on the other hand a recursive construction accor-
ding to (19.18) is used, the CFPs can be calculated recursively withe
out explicit knowledge of the many-particle functions,

The analogue of (19.11) then is:

c _ . (4] L + : 2
Ty, 2;€2:<§1a1p1]tp lo,8,p0a% (0,8,1,)2(0,8,p,)
1%1P3
= §:<oiéi||t°ﬂozé2>e(pig ; 2)%a*(0y2,p,)a(0,2,D,)
1*#1P3®

From (19.20/21) results the general interrelation between the reduced

(19.21)
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many-particle and the reduced one-particle matrix elements: ;
c _ o c . . an . L3
CERH "N62d2>% = 37 50y lt%0 8,0 85 g ,6,a801849085,¢)  (19.22)
05234€ 17177272
with the weight factor:

61d1,6 d(oiéi,ozéz,c) = NVdimdidimdé%TF_ﬂﬁ-1¢f,oiéiﬁNéid£>o
.<ﬁ-1¢f,ozézﬂNé2d2>k{féid;o}{é;ca s}{aZ}{f+d§d% eton
This again is a relation of the principal type (1.2) with the geo-
metrical factor (19.23). We have termed it g.. keeping to the nota-
tion of Griffith {5], section 7.2.
Similar relations result for the two-particle operators. (19.12)
reads now:

G (1/2)Z Z(G ‘111’110 zpz'g,(’ 3P3!° 4P4>
C.
1545 a*(0y3,p4)8*(0,8,D,)a(0585p5)a(0,8,0,)

(1/2) ( ’ Yrelisll( 90,23, ) e
p%;;%<:° 1 °2 2)relfell O3 3 Oy 4 >

(19.23)

(19,24)

H

*A ((oi 1,°232)Y°P0)A((5353!5454)P°Pc)
with the pair operators (s.-a. geminal creation operators):

K*((0y8y,0,8,)vep,) = Vaiaaz(pi 2°) ra*(0,80))a%(0,8,0,)  (19.25)
From these operators follow the two-partlcle CFP:
<ﬁeeﬂA+((oiéi,ozéz)yc)ﬂN-26d>

VNZN-iidlme<ﬁse{1N-26d (o1 490 2)7@%
And the matrix elements of the two-partlcle operator finally are:
N(N=-1

sy ap|6 N6 ,ap) = JT-ZZE' Sd(0y84,0,5,)v¢ll8ll (585,043, 8D

iTHe (19.27)
z;:<ﬁ-2¢f (oi 1,02 z)ycﬂNé i} i-291, (o3 5004 4)pcKN62d>

again a relation of type (1.2).
As a consequence of the delocalization of the kanonical MOs, the

(19.26)

results,shortly summarized here,have no specific polycentric charac-
ter, This character again appears, if we calculate the density ma-
trix of a molecular state with respect to a localized A0 basis,in or-
der to read the charge and bond orders with respect to this basis
{64). We only discuss the demsity matrices of totally symmetric
states or the average density of degenerate states, Taking the aver-
age is equivalent to picking out the totally symmetric part of the
density matrix [65]:

- =1c/ (s .
Iki¢aapa’3k¢bbpb— dimd %ﬁﬁadpdla (A1¢aapa)a(Bk¢bbpb),Nédpd> (19.28)
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Because of (19.19/20), this is essentially a bilinear sum of CFP in
the AO basis, As a iypical two~centre matrix, (19.28) falls within the
scope of (4.13) and has the following representation:

+ _+
I1i¢aapa,Bk¢bbpb = EEEI(AwaaHBwbb)Sse(;agb325VI7aIﬁ€(§;k,Ssepe) (19.29)
The BRMs with S#0 are the symmetry-invariant representation of the
bond orders classified according to the bond edges, those with S=0
the charge orders, This is the solution of the problem posed in [64],
page 60, i,e, the problem to define the bond orders invariantly to
symmetry operations in the presence of several bonding electrons,
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20, Sketch of the VB picture

In contrast to the MO picture,the VB picture naturally contributes
further stimulating aspects to the polycentric algebra. After the in-
itial success by Heitler and London the VB picture [66] has not been
popular because of the multitude of configurations, But the calcula-

tions,focussed on the atoms and compounds of the first period,have
led to a one-sided view, Among the transition-metal and lanthanide
compounds treated in the first approximation by the weak field coup-
lingythere are obvious candidates for VB calculations and moreover
of its atoms-in-molecules version proposed by Moffitt [67}. In this
connection, we again point to the discussion in [52], page 444, In
view of the expenditure on CI calculations the VB may become competi-
tive again,

Avoiding orthogonality problems,we start from the Lbwdin basis (18.
13) and adapt it to the symmetry group:

|Lbw.Alp ap, > = Y|Tbw.Ain 1 m XA m |1 aap_ > (20.1)
with ¢a=(nalaa). The commutation relations of the pertinent occupa-

tion operators are:
[a+(LUw.Ai¢aapa),a+(L6w.Bk¢bbpb)]+=[a(LUw.Ai¢aapa),a(LUw.Bkmbbpb)]+=O
[a+(LUw.Ai¢aapa),a(LUw.Bkmbbpb)]+=6(A,B)5(i,k)é(ma,mb)6(a,b)5(pa,pb)
where in detail 6(¢a,¢b)=5(na,nb)6(1a,1b)6(a,ﬁ). (20.2)

After the model of (19.18), one generates the VB functions by re-
peated application of the creation operators, Each added (spin) orbi-
tal introduces a new centre into the many-particle function, so that
every VB function is associated with a more or less asymmetric poly=-
hedron., The vertices, some of which may coincide again, are valued
differently by the AOs.

Against the first sight, this building up does not lead to an incal=-
culable multitude of different polyhedra because of two reasons, By
(3.25), (7.8), and (10,2) we already have become aquainted with the
equivalence of polyhedra and vectors inducing the same representation
of the symmetry group. There is only a limited number of such repre-
sentations, which are determined by the vectors a) in general position,
b) on equivalent plains of reflection, and c¢) on equivalent axes of
rotation, Because of this equivalence,the polyhedra fall into classes
inducing equivalent representations, Fully identical representations
are achieved only, if the numbering of the polyhedra is coordinated.

On the other hand,the number of different polyhedra is limited by
the Pauli principle. If all orbitals lAi¢aapa>vﬁ¢h fixed A, 9, and
a are doubly occupied, the result is a full supershell, We use this

term with respect to reducible representations. In general a super-
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shell contains several ordinary shells belonging to irreducible repre=~
sentations, The polyhedron associated with the supershell has 2.dima-
Z(A) vertices, 2+dima of which coincide at each centre. Therefore it
is totally symmetric,and there are no higher polyhedra within a super~
shell,

In the following,]?n represents a set of equivalent polyhedra with
n vertices and PE the k=th polyhedron of this set., The symmetry-adap-
tation of a scalar polyhedral function (PEjF) is analogous to (3.17):

(Pleep IF) = E(PneepetPﬂ)(Pan) v (20.3)

where the SALC coefflclents (Pnaep an) are determined via the asso-
ciated vectors Pk-EZPA -A with A éPn.

In parallel to (19 18),we now generate the many-partlcle VB states:

1 *q A
tay™ sdpd>{d}\fzmn*1)dmd§(§ p.p) *(i g )-a*(Luw.Acpaapa)lP“v«(epc> |
20.4
with 5—(Aoaa Pnyc,a) The gquantum numbers 6 and y recursively notify
the antecedents of the state, T is the generalization of our topolo=-
gical matrices and does not vanish only, if Q§+1 comes from Pi by the

addition of the new vertex at Ay

vy o n+% Nz (P, ie R A

(20.5)
0 otherwise
Obviously there are orthogonality relations like:
2 P PR L s(q,me(1,m)/2(M ) (20.6)

Apart from the antisymmetrization,the formation of the geminals (9.3)
is a simple example of (20.4). The states generated in this way are
in general non-orthogonal and moreover often linearly dependent, Of
cours, the diagonalization of the overlap matrix of these state may
serve for the orthonormalization again, But because of the high dimen-
sion of the supershells,other methods,like the quasi-spin or seniority
formalism,will be more economic. The functions (20.%3 transform in
accord to the reducible product representation d Xo

If Tg is a translation invariant or a s.,-a, operator at the centre
of symmetry, the matrix elements <Q§aepe'Tg lRléep ) are associated
with a polyhedron of 2n vertices composed of the polyhedra QE and Rl'

We express this composition by another topological relation:
n.n,2n 1INz (P, if B & RD = P2 »
AQ RTP _ 1 m
T ) - (2007)
k1lm
0 otherwise

Having defined this’we can state the following theorem:



83

(Qeep, 1 IFhee = . Z(Q el 20 (2 ;;ygfgy

Nz (PR ,E’,) (22™ 2% xpp )
This theorem,including the proof,agrees totally with (4.6). The inva-
riants therefore are termed polyhedral, reduced matrix elements (PRM).
The polyhedral VB functions (20.4) now are combined to SALCs. This
is quite analogous to (5.1):

A
fQ etp, ) = E K(nfps,Q"k6d,ep, )+ |Qfeep, > (20.9)
e

(20.8)

with ¢=(ce,bd,mn), where ¢ is a compound index corresponding with (20,
4), The generalized SALC coefficient is:

K(nfp;, Pksa,en,) = {f}r_‘dimfZ(g 4 §)"-(Q§|Qnadpd> (20.10)

Apart from (5.1)ywe already kmow another example of (20.9), namely
the formation of the s.-a, geminals (9.4),
Again we apply the WET to the matrix elements of the states (20.9)

Ci cpfpf!Tc {R"yep, ) = Z(Q ol TC|IR 7g>€(§ ; 8, (20.11)
cPg

the RMEs of which are related to the PRMs quite in parallel to the
relations (5.5 or 8), This relation requires the definition of a po-
lyhedral isosealar generalizing (6.6):

n n.2n (20, 12)
o [QRTP PRip2n n n on,.2 dr
F15(6 ¢ = | =53 ¥ 27)(qP1qPsan,) (RR|RPorp. ) (2% 2% gpp ) (4 T Pye¥
d g P e E;; k1lm Qk a 1 r’tm P’ pyPn p
Then follows the theorem:
@orlIn IR 1y = TEB, (x,7,2)+ (Fea| IR L) PET (20.13)

with the generalized geometrical factor

n_nN..2u
¢Bo 1(%,7,2) = {£*gcé}Vz(P")dins- dimg-ZPIs(6+6 n
a a*d p

f+ I
{ g’: } (20,14)
[¢4

e

and the compound indices ¢=(ece,bd,n), y=(éé,6d,e), y:(&dnf,ddeg,g),
x=(q%,R%c), and z=(hc¢P2nnp).

Besides (5.5), another example of (20.1%) is hidden in (11.20),
since the geometrical factor GEO3 is composed of three factors of the
general type GEOI. From the general point of view the polyhedral iso-
scalar of the third kind is nothing but
TST, (T4SZT2

) = PIs

PIs? (20.15)

The 6j symbol appears in (11.20) instead of a 93 symbol as a result
of (2.52/53), because the operator is a scalar.
One-particle operators have the representation
c _ C
Tpc_ :Ain 2: (Ldw.aig ap, |t cthsw Ek(pbbpb> (20.16)
P,X : a (LUW.A1¢aapa)a(LUw.Bkabpb)
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and in order to trace back the PRMs to the one~-particle matrix ele-
ments and their invariants, we must examine the polyhedral matrix
elements of the occupation operators, i.e, <@§+16dpdla+(LUw.Ai¢aapa)I
]Pﬁeepé>. These matrix elements are zero, if Pﬁlﬁ;:Rg+1¢Q§+1; for the
VB functions referring to R;+1 and Q?+1
they differ by one Lbwdin orbital., Hence the matrix elements behave

like the topological matrices (20,5) and allow the factorization:

n-+1
<Q1i+16dpd]a+(L6w.Aiqaaapa) !Pﬁeepe>=c-'f(Ql é_& in)

The proportionality factor C transforms according to the direct pro-
duect d+>< aXe, so that the WET yields a further factorization:

<Qxi+1édpdla+(LUw.Aicpaapa)'P§eepe> (20.17)

_ el + d*a eyp,a 0t PP
= 2@ sallat (apza)lPlee), (o © DIHR(Y Y )

At this point,one mgght argue that the matf‘z}x elemgnts transform ac-
cording to the sixfold product d+X axe Ach o‘AxGP and should have a
more complex coupling structure than (20.17). But since the couplings
of the polyhedra and of the orbital representations have been kept
strictly apart in (20.4), the matrix behaves like a double tensor of
xaxe on one hand and of O'Q';I oAx cPh on the other,

In analogy to (19.20), the polyhedral CFP are defined as follows:

<Qn+16d||a+(Aq>aa) | P e e>u=( -1)**f(ne1)z(PH) dimd'<Qn+16d {'Pne e, Aq)aa>u

. (20.18)
Baving defined this,we can determine the PRMs of (20.8) by the

BRMs of the LBwdin orbitals, a relation that replaces (19.22) in the
VB case., For this purpose,we solve (20.8) for the PRMs:
n.n
n ey tNfne _ Ty, 35 mf, 2n 2ny ~QR'P
(Peellz®R7 )Y = V2(2™)-ains (P wopp |2 %5 1 o (20.19)
tte pYoX ete £yn%  n C yon ity
. . . e T R7ee
(pfpcpl), (pep’epl), Qeerel Pc' Be )
For the matrix elements on the right side,we substitute (20.16) and
(4.6)for the one-particle matrix elements in (20,16). This yields:

f o
(Q"eel TcIIRne'é)PB.?;p= TEEOG(x,¥) (Low, A, 2|t || Low. B, b) §1Z (20,20)
with x=(Qn£e,Rne'e',fnq>,PX‘np) and y=(Aq>aa,Bq>bb,Scs,gya). For the pre-

;ent, the geometrical factor is given by:
2n .+ + %
) _\r—-zw)'—:——v S o n 2n\ A QanP e py¢’
EOq (x,y)=VZ(P")2(-ABS)dimf E%—T(P o, {Pp )T 1 o )(PchP%
td £irfatp *te sta _,-aABS,, 2
(2 )™M BYY(8 ¢ Sy, (=222) (5] |sosp,)
PePePr PoPpPy PgPPg 138707t s
: ‘o0 d
-<Q§eepe ’a+(L6w.A1q>aapa)a(LBw.Bjcpbbpb) ,Rlee’p'e>
stween the two occupation operators we insert a comp ete function
. - n-1 R . -
stem, 1i.e. 6‘;% p:d'T;I iédpd><£r 6dpd', exp ess tre resulting ma

are mutually orthogonal, since

2n
)
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trix elements by (20.17) and collect the 3jm symbols in a 6j symbol:
6BO4(x,y) = 6(£,8)8(s,p)6(x,0)dins 1z (P¥)z(~4BS) '{ba"'fy}F{eH'bdp.}
*at R™ P —ABS
“1p o+ — E;: z:: (P* nspg | P2) (5} | Sosp, )T(g 1m ) Ciy¢)

n - . -
q@fg)ﬁ§§£)@eﬁau%amn%QQﬁwfw%mmn%ow

From this expression;we isolate the following topological invariant,
which is remotely similar to a 63 symbol-

n, n-i n-1
RP/S /\QRP o(~ABSya QA T A/R'B T
PW{ }= atns™ g};(klm Ciye® ey Q32 )
(§l]sgsps)(P”%spslP;5
It relates the edges S associated with the one=-particle BRMs to the
polyhedra P°" belonging to the many-particle PRMs, Speaking more pre-

cisely, it indicates, which edges S interrelate the centres in Q with
those in R® and if the representations cS and oP have in common the

(20.21)

irreducible representation s.
Introducing the polyhedral CFP by (20.18) yields the final expres-
sion of the geometrical factor:

GEO4(x,y) = 6(£,8)8(s,p)8(a,0) n-Yz(P*)2(-4B5)2Z(Q")2(R")dine dine"
+.+ R 7o08
4. 17 fe a’d R P%/S
'iba+f?}§d§fe bduf {b ef f+}nyuu'Pw{B A / } (20.22)
-1 1t n=i
.<bnseﬂTn 6d,A¢a4>u<BneeﬂT 6d,B¢bﬁ>w
By inserting (20.20) into (20.13), we can directly link the RMEs
of the s,-a, VB functions to the one-particle BRMs:
QPotl IR D o = Z GEOio(xi,yi,yZ) (0w, Ap, afl t % Tow. By, b) EYS (20.23)
with 9=(ee,5d,n), ¢&(e d 8d,1), x,=(q" e,B" e\c), y, =(8dnt,8dt,d),
and y2=(A¢aa,B¢bb,Sos,gya) and the compound factor:
P
GEO, (X, 5T4,¥5) = GEO, (X,,¥4924) *GEO5(2,,7,), (20.24)
10810710V 2 E;;P 5 1'7107 1071 g \“29J27
where zi=(hch”&p) and z2=(Qnee,Rndé;hor,P”%p).

0f course, a similar analysis involving the polyhedral two-parti-
cle CFP can be made for the two-particle interaction operators.
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21, Prospect of crystals

As mentioned in the introduction,the symmetry amalysis lined out,
so far, can be transferred to crystals, i.e, to space groups. To be-
gin with,we confine the discussion to the formation of SALCs, as far

as this can be achieved without using projective representations [68],

21,1, The irreducible representations of space groups

We summarize the concepts needed to set up the irreducible repre-
sentations of space groups. In general we keep to the book of Streit-
wolf [37]. '

The space group is marked by G, the related point group by GOA‘G/T,
where T. is the translation group, An element {a[?} of a space group
is the operation defined by a translation Z€T and a rotation ae GO:

{afd}F = of + & o (21.1)
From this definition follows {B|B}{a|3} = {Ba[paiB} and {a]gf'i=

{a'i,-a-igg. The unitary operator representing {afzféG in the function
space is in accordance with (4.2) defined by:

<?’U({al§}),@> = <{a‘§}'1?1¢> = <@'13La'13,@> = <a'i(¥-§)ly> (21.2)
The irreducible representations of the space groups are character~
ized by wave vectors within the first Brillouin zone. To each wave
_.?
vector k belongs a subgroup GdEC'GO,.the elements of which leave B
invariant or transform it into an equivalent wave vector:

Gz = {B with pe G, and g¥ = ¥ + X}, (21.3)

where f’means a lattice vector of the reciprocal lattice. This point
group is also termed the little cogroup of'f-[68]. The irreducible,
projective representations b of these cogroups enter the ordinary,
irreducible representations of the space groups., We designate the ir=~
reducible, projective reprssentations of the little cogroups by
DEP (B) with peG y, (21.4)
Ppap ok

wherei? indicates the pertinent wave veetor. Because this concept of
projective representations is significant only for some wave vectors
at the surface of the Brillouin zone of non-symmorphic space groups,
it is entirely avoided by Streitwolf [37]. But it allows the general
and coneise formuwlation of all irreducible represenfations of all
space groups (21.10) below, cf.[68].

In order to select the elements of Gdf from those of Go,we define
the symbol AE?a) ~ {.i if « Gz, i.e. aR=K+X

0 if a Ggz, l.e. aRAGK
The coset decomposition of G, with respect to Gop is:

(21.5)
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= Z @G (21.6)
with the coset representatlves a5
By applying these representatlves to k,one generates a set of wave

vectors k (within the first Brillouin zone), the so called star of
f, which is designated by NS
"k = {E; with K= a ¥ + K} (21.7)
We choose ay=€, i.e, i;ﬁi. The vectors E}é*k are termed the prongs
of the star.
We now can generallze (21.5) to all ae G by defining

Ak («) —Ak(cx ax;) ) (21.8)
or because of (21.5 and 7). N
AT‘) @ 1 if akyk; + bid (21.9)
A o = .
i 0 if aic’j;éi’i + T

Now all necessary notations are collected to write down all irre-
ducible representations of the space groups, These are determined by
a star *k and an irreducible (projective) representation b of G o
with k€+k The components of the representations are determined like-
wise by a double index, i,e, by the prong j (k respectively) and by
thg component py, of b(G -9 Using (2.4), the representation matrices

({al¢}) then are given by:
ipl::gr({a[a}) _Ak (a)Dkb (agiaaj)-exp(-ii’i-a’)(21.10)
The associated bases are denoted IB( kb)ipb>, where g is a discrimi-
nating index.

At this point;,we must insert a marginal note concerning the phase
in eq. (21,10). This phase is sometimes chosen more complicate as in
{69, eq.(4.19) and [70b}, eq,(I.4). The difference resulfs from two
gauge transfo;mations,A) of the representations of G p: D kb(B)
exp(~ike7, )+ D (B) and B) of the bases: IB(+kb)ipb> = exp(-k s i)-

,B( kb)ipﬂ), where ¥, denotes the non-primitive translation belong-
ing to the rotation or reflection y, We have three reasons for our
choice of ghe phase: A) for internal points of the Brillouin zone our
matrices Dk (B) are genuine vector representations and not only pro-
jectively~equivalent to vector representations, cf.eq.(4.25) of {[69].
B) In the following relations concerning the bases (21,13 and 14) no
phase factors occur. C) Eq., (21.10) is plainly simpler,

The transformation property of the bases with respect to the ope-
ration (21.2) is now given by:

U(§a 2P fp(*0) iz, > = 5 D§pkb) ({alZD-fs(v)in) (2112



88

The SALCs or tight~binding functions intended have to comply with this
relation. Since we have derived the theory of SALC coefficients for
ordinary vector representations only, we must exclude the few cases
requiring really projective representations. .

21,2, Symmetry-adapted functions for symmorphic space groups

We start with a construction, which is restricted to symmorphic
space groups but immediately resumes the molecular symmetry-adaption;
for in the the symmorphic case the Wigner-Seitz unit cell can be trea-
ted like a molecule and the point-group adaption can be simply com=
bined with the well-known Bloch sums [37], eq.(6.14).

The relations (21.10 and 11) suggest that the atomic orbitals must
be adapted to the pertinent little cogroup. The coupling according
to (5.2) then has to be done with respect to the same group., The ad-
aptation thus depends on the point of the Brillouin zone.

In order not to operate with SALC coefficients, 3jm symbols, and
s.~a, atomic orbitals of several point groups simultaneouslyswe pro-

ceed as follows. All atomic orbitals are classified according to the
irreducible representations of Go and in the frame of a universal,
fixed coordinate system. Then the s.-a. Wigner-Seitz~-cell orbitals
are formed using the SALC coefficients belonging to G And only in
conclusion,the SALCs are subduced to G o if necessary. If A are the
position vectors of the equivalent atoms within the Wigner-Seitz cell,
the s.,-a. cell orbitals according to (5.1/2) are given by:

'(Ase,maa)ycpc> ;: K (ycpc,Aise ap,)* <i-A ,¢aapa>
with
. etate
K (ycpc,Aiee,apa = {c}vaimcz (p 0 p)Y(A ]Asepe)
For k—O,G is the little cogroup and the s.-a. tight-binding functions
are simple Bloch sums for the lattice vectors f&

<?'6(+0c)0pé> = %;: K°(ycpc,Aiee,apa)<fLK;-ﬁ]¢aapa> (21.12)
Py

with 8=(g_ akecey).
In the other cases;the s.-a. Wigner-Seitz-cell orbitals have to
be subduced to the little cogroup G belenging to the relative prong
T%. A1l 1ittle cogroups Gok belonging t0 the same star are isomorphic
to Gt J 1
Gof3= @y G Ry
This means for the representation matrices:

pEgb b , -1
J (33 = Dlgbqt()aj pa;) with BjéGol—()j’ BeGp
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The coordinate axes are different for each ‘E’j and the bases are rela-
ted by
-y
U(ay) [Bopy = i op,» (21.13)

Hence it follows for the adaption coefficients of the group chains

G > G EB and Go:,Gdf:

SRA N z Dpeq(®3)<ea, [Bovry), (21.14)

where c is a representation of G with the matrices Doc(a)
We no state that the s.-a. tlght-blndlng functions are given by
<Fl6(kb) ipy (21.15)
E :<cpc]kjsbpb>K (vep,sAice,ap, )~exp(1k B) - &-K -ﬁ']q)aapa>

with &= (acpaAeeycB)
To prove this,we have to demonstrate the property (21.11/10), With
(21.2), we have at first:

CIU({ala})lé("kb)jpg (21.16)
g Zexp(lk K)<0P %, Bbpb>K (yepy,Aice,ap, )<a” 1(23-af, -aﬁ’)’cpaap?
PaPe

Because of (4.2) and (3.3),it follows
& 1(?—a—aAi-aﬁ)[cpaapa> ; p°2 (ac) (a)(r-a—A -aR,(paaqa> (21.17)
and further with (3.5) and (2. 22)

21.18
; Ko(ycp sAiee,ap, )-])oa (a)c‘A.(a) ZK (yeqc,Akee aqa) pP° ( )
q

9, P
c
Substitutlng (21.17/18) into (21 16) yields the intermediate result

C,U({a!a})]6(+kb)jpb> % > exp(lk -R)<cp lk Bbpb>])°° (a)
c 959, Pe (21.19)
‘K (ycqc,Akee aqa)C-a-Ak-aﬁ"cpaaqa>

This requires the calculation of the sum
)I_:cDgcp( @) $ep, [ pom> R
; : Dy (ai)D°° (a'iaaj)l)gzp((:a'ji)(tfpclf’jsbpl}Ali(j(a) ,

where aiiaaje ;ok because of (21.9). Using (21,14),we get further:
-5 anzr((:a o3 (a'iaaj)@ Lo paf ;(a)
= Z Z]) (ai)<°rc!k8bqt>])qbp£ai aay )Ali(j(a)

and finally with (21.14) agaln-

pcD°° () ep, lijbpb> ; ea, K, Bbpb>])kb (a'iaaj)Ali‘j(a) (21.20)

We have to insert this result into (21.19), In addltionrwe substitute
Z+aR=R’or Rra 1(R--a).. Replacing the sum for ® by a sum for ﬁ”we get:
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<»’U({a}§})’6(+kb)jpb> ;E;: exp(iak (ﬁia)) ( 'iaa ) A (a)

<°qcl% Bbqb>K (veq,,Akee, aqa)<r-Ak ﬁ"cpaaqa)
Because of (21.7), oy “aa eGdK' and (21,3),we have:
akj-a (a oo )a 1z -ai(a aaj)k+ki—a k+K2+fi-ki+K +K 42 —k +8
Since R-a is a lattlce vector in the symmorphic case, this yields:
exp(lak «(Re3)) = exp(iﬁl(ﬁig))
and we can sum up with (21 15)

ClU(falai)’é(‘"kb)pr)le (a)D b tmj)exp(-ifi-g)Glé(*kb)iqb)

This proves (21.11/10).

21.3. Construction includung non-symmorphic groups

The Wigner-Seitz cell of non-symmophic groups is not invariant to
Go and in general not to Gdf‘ Therefore we can no more rely directly
upon the SALC coefficients of the point groups in the configuration
space as in (21.12).

We propose another method likewise applicable to symmorphic and
non-symmorphic groups. To this end we remember section 12, Accoding
to (12.16),the SALC coefficients could be determined by substituting
the atomic positions into s.-a, functions. If we set aside the ortho-
normalization in a first step, every s.-a. may serve for this purpose,

Such s.~a. functions are the symmetrized plain waves according to
[37], section 6.2, For internal points of the Brillouin zone,we can
set up these symmetrized plain waves again by the help of the SALC
coefficients using them now in the reciprocal lattice. We again start
with k=0 in order to keep the calculation in Go descending to Gok in
the end.

We choose a set of equivalent lattice vectors in general position,
This choice avoids invariance groups & f'and their cosets and yields
a maximal number of functions, Starting with a lattice vector % in
general positionywe can number the members of the equivalent set by
the elements éGb: ﬁé:si: We now claim that the following SALC. of
plain waves belongs to the irreducible representation (+Oe) of the
space group:

&w(*oe)op > z:; (K”Keepe) exp(—KB'vB)-exp(lK ) (21.21)

The proof of (21.21) is contained in that of (21.23).
The symmetrized plain waves of the general case E¥O are:

G!WEB (*kb) jpb>=%(fﬁlll{eepe) <epe 'chijerxp(-;if{*B:-vBr) exp [i(I-{'H-k ) -21 22)
e
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But in order apply the coupling coefficients of Go,only we use
(21.21) to form the s.-a. tight-binding functions for the special
case ']Z=O:

z35(*00)0p )T K (op,  Kiee, ap,) exp 1Ky (RAE, ) JF-R-E Lo gam,)
pa

with 6-—(cp aAKeey). Descending now to G, we generate the s.-a. tight-
binding functions for the general case- j

1B (*xd) o) = 'L; Z K°(yep, ,Kfee,ap,)<op, K] Bbpb>

-exp[ﬂ{'ﬂt ((:R+A )]exp[:.]a:j (R:-A )]<?’R’I’ |cpaapa>
with n=(p aAKeeycp).
In our final proof,we show that this formula comprises all tight-
binding functions of intermal points of the first Brillouin zone., At
first we have with (21.2):

GJu({«13}) frBn(*xb) jp ) = Z:_Z K°(vop,,Keee, ap, ) {op, |KX,Bbpy>
-expflfﬁ/ (R«r-A_‘_'-VB:)]exp[:.]a:j (%+I_’t)1<a°i(i?-a—aR-aAt)'cpaapa>

(21.23)

Substituting FraRral =§>5-T\>u or Wik, =a'1(fd-%-3) and using (4.2) yields:
%Zz k° (ycp ,KBse ap,) <cp lk Bbpb>-exp[1af{'l-(R+Au-a-av I)]

P PaPods -exp[n.akj (R+ _-g)].Doa ((x)<r-R-Au'cpaaqa>
{aB]aq-a?B:} fag)7, E)1«»-T{”’},‘t:here is the relation
exp [i(xf{')ﬁ/- (R+Au-vaﬁ’)]

= 2?17{161((!) *exXp [if,{' (ﬁ)-ll-l—\bu-;f’v/)] .
Using this and (21,18), we get: Y
%Z > K (ycpc,Kyee aqa)Doc ((x) <cp fk Bbpb>exp[117?n(R+Au-v v)]
Pelale -exp [i(xk (R+Au-a)]<1':-R-Aulcpaaqa>

[t}

Because of {“'35{5"?5’}
exp [i (xl?ﬁl' (ﬁiKu';“?ﬁ’)J

[}

and further with (21,20):

S k° (yeq, ,Kykte, aqa)<cq Ik Bbpb> Dk ((x aaj)Alj(a)

Hatple sexp [:LK ,-(ﬁ)q-Au-v ;)]exp [i(xkj (R+KuBa)]<9-ﬁwAu'q>aaqa>
From Akj(a);éo follows again akj_k 43{‘)/ i.e, for internal points akJ_k

This requirement restricts the method to intermal points., We no col-
lect the sums according to (21,10 and 23):

- ; N kb) ({a’g})@’TBn(“kb)lqb)
9y

and this had to be shown.

We have pointed out, how we principally can determine the s.-=a.
functions and thereby the SALC coefficients of space groups. A more
systematic approach results, if we derive;from the symmetrized plain
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waves,the standard functions of the space groups as in section 12,
This yields complete orthonormal sets of SALC coefficients.

There still remains the problem of the surface of the Brilluoin
zone, In individual cases,one may obtain symmetrized plain waves or
tight~binding functions by induction from a symmorphic subgroup as
shown in [37].

But the systematic approach requires the projective representations
of the little cogroups, As has been shown in [71],a1so the Clebsch-
Gordan coefficients or 3jm symbols of the space groups are related
to those of the projective representations of the little cogroups.
They are treated systematically in the paper of Dirl [70]. Starting
from the references [69-71],one can elaborate the Wigner-Racah alge-
bra, then +the polyhedral invariants of the space groupsyand apply
both in the theorems demonstrated in this treatise.
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22, Case study: Tetrahedral structures
22.1. Preliminaries and standard functions

As an exampie,we consider the polyhedral symmetry properties of some
tetrahedral struqtures like the molecules P4 and P406. The basis of this
consideration are the classic tables of the characters, the 3jm, the 6j
and the 9j symbols of the group T4+ Because of the isomorphism of the
point groups Ty and O;we can take over the tables given by Griffith [5]
for the octahedral group O, The full matrices of the irreducible repre-
sentations have been tabulated by McWeeny [30], table 4,19/20., The op=-
eration of the group elements of Td on the position vector ¥ is listed
in the following table.

Table 1, The elements of Td and their operation on T,

g Xy z g XYy Z g Xy 2z 4 Xy z
E Xy 2 ngz Z=X~y 52 Y=X=2Z Sf -X=2Z y
Cg Xwy=2 Cgiz -2 X=y cxy ~y~X 2 cyi Xzy
Cg -X y~2 agyz vy 2Zx Oy Y X2 SX Z=y-X
Cg X~y 2 égyz -y z-x SZ -y X-~2 Oy 27X
ngz ZXy §§y2 -y-2Z X Opy  X-2-Y Opx =% J-X
ngz ~z-X ¥ 6% 2 yez-x §z -X z-y §X -z-y X

Before considering specified structures,we have to prepare a complete
set of standard functions of the group Td following section 12. From
the compilation by Bell [38) we take the following set of non-orthogo-
nal s.-a. functions being complete in the sense of the scalar product
(12,2):

1) species Ay
@D =1 : (22.1)

2) species Ay

Gl = (-3 ) (y°~22 ) (2% ~x?) (22.2)
3) species E (components 1 and 2):

GUED = 222 x?~y° &12EL) = 2z%-xt-y?

QUED = V3(x*~y*) @12ED = V3(xtyt) (22.3)

4) species T, (components £, 1,7 ):

@lme) = (v°-2°)x, @long) = (v -2°)yz, @I3n8) = (5°-2°)x°
Gy = (28-x*)y, (Fleryn) = (2°-x°)zx, @30y = (2°-x)y® (22.4)
@linyg) = (2*-y*)z, F120,0> = (-3 )xy, @I31,5) = (x°~y%)z’

5) species T, (components x, y, 2):

<i‘liT2x_> =X {Flerx) = yo &l 3T2x> =x°
€|1T2y> =y <?12T2y§ = zX ®3T2y> =y (22.5)
<?]1T22> =z <'1’12T22 = Xy <?!3Tzz> = z°
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Because the elements of the Gram matrix (12,9) are sealar functions
of Eﬁ it is advisable to study the scalar functions with respect to Td
in some detail. There are even scalars of order 2n:

Se(?2n) = %0, y2n + 228 (22.6)
and a second type of order 2m+2n:

se(2m,2n) = y2m22n+ Z2my2n+ Z2mX2n+ x2mZZn+ 2my2n+ y2mx2n (22.7)
The latter type includes the special case:

Sc(2n,2n) = 2(y2nz2n+ 220x20, X2ny2n)

A third type of even scalar functions is:

se(zm,2n,2p) = 5 x Py Ml (22.8)
including the special case: 7
Sc(2p,2p,2p) = 6x2py2pz2p
The only essential odd scalar is
Sc, = X*y*z, (22.9)
from which all other odd scalars result by multiplication by an even
scalar.

Also the even scalars are not independent, but can be reduced to the
three basic scalars Sc(2) = r?, Sc,, and sc(2,2) = 2(y?z%+z8x% +x%y%).
We give some examples:

Sc(4) = x4+y4+z4 = 8¢(2)? - Se(2,2)
sc(4,2) = 0,58¢(2)+Sc(2,2) - BScZ
Se(6) = Se(2)® - 1,58¢(2)+5¢(2,2) + 3Sc§)

We now build up the system of standard function beginning with Gram’s

matrix according to (12.9):

() = ( ) #)&?Inapy = aina™ ¥4
map [nap g%(map‘g >&Fnapy » ima g% %@aplg >& 21212120)
(ordG/dima)y {map |7 )&} nap)
P

The evaluation of the last sum in general requires fewer terms., The
first standard function can be taken directly from the sets (22.1-5):

C?’st.ia§> = {F|1ap) (22.11)

with p(1a,?) = Sii(?) according to (12.3).

In the case of two~ and three-dimensional representatlons,we slightly
modify Schmidt’/s orthogonalization process in order +to¢ generate purely
polynomial functions:

i

(Flst.2ap) = 57, (F)<F2ap) - si‘g(f)@pap) (22.12)
with
w(2a,B) = (53,)°+85,~ 87,°(53,)° = p(1a,%) det ii 12 (22.13)
Sa1

In the case of the three~dimensional representations,the third stand-
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ard function is given by:
@’St 3ap> (22.14)
= (Sii 22-(S 2) )<?'3ap> (Sii 23" 123 3)<quaé> '(S 3 22 23 12)<?|1a§>

with \ @ 531 53 S 13
u(3a,2) = det -‘éi 121 .qet|s3, s22 555 (22.15)
S51 537
531 53, 533

The arrangement is such, that the scalar of the highest order 833(r)
does not appear in the third standard function (22.14).

We now compile the standard functions of the separate symmetry spe-
cies:
1) species Ay:

Elstup D=1, (e =24 (22.16)
2) species Ay:

Elst.a,1y = (£2-3°) (y2-27 ) (2% -x*), n(4,,P) =24(x*~y*)® (y°~2°)® (2 -x*)*
(22.17)

3) species E: From (22,3) results:

sty=24(25c(4)-5¢(2,2)), S],=24(25¢(6)-5c(4,2)), Sp,=24(25¢(8)=Sc(4,4))

(22.18)
and further:

Elst. AEL) = 228 x*~y*, (P|st.1E2) = V3(x*~y®)
w(1E,?) = 24(2Sc(4) - sc(2,2))
(@lst.2EL) = STy (B)«(2ztxt-yt) - ST, () (227 x*-y*)
@|st.28D = 53, () V3(x*y*) - sT,(D) V3 5*) (22.20)
B(2E,2) = (57)° 55, - Syy+(57,)°
4) species Ty: From (22.4) results:

STH(®) = 8(5c(4,2)-5¢(2,2,2)), SyH(F) = 8(25c(4)-5e(2,2))se,

S35(F) = 8(5c(6,2)-5c(4,4)) , S74(F) = 8(Sc(4,4)~5e(4,2,2)) (22.21)

S35(F) = 8(Sc(6,4)~5¢(6,2,2)), SH5(¥) = 8(sc(4,2)-5¢(2,2,2))se,

and further:
&lst.1146) (y®~2z®)x and cyclic permutations

u(iTi,f) 8(sc(4,2) - se(2,2,2))
@[st.ZTﬁ) = Sm‘i()?')-(yz—z2 )yz - S%Z(?)-(yz-zz)x cyclic
w(21,,7) = (53y)° 75 = Spy(S7H)° }
Lot 31,0= (577555~ (575)7 )+ (v%~2°)x* - (ST|S55-S15515) * (v ~2*)y
-(sfgsglz-sggs%) «(y2-2)x  ecyclic 22.24)
U(BTI,?) = formula (22.15)

}(22.19)

I}

}(22.22)

(22.23)
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5) species T,: From (22,5) results:

ngi(f’) = 8r? Sp5(P) = 45¢(2,2) Tz(i’) = 85¢(6)
(22,25)
515() = 24xyz 515(3) = 8sc(4) st (@) = sr’xyz
and further:
<?!st.iT2x> = x and cyclic permutations
22,26
u(ithi) = 8r? }( )
Fst.21,x) = 8r°yz - 24xyz+x  cyclic
2 T2 Tz y2 }(22‘27)
p’(ZTZ’?) = (S ) 322 Sii‘(s )

T2 T2 gT2 Tz
@lst.31,%) = (S33575-(515)" )~ (513535-515515)vz

- (s74555-575572)x  cyelic (22.28)

p(BTZ,iU = formula (22,15)

22,2, Equivalent sets and their SALC coefficients
After this general preparation,we come to the particular structures
having Ty symmetry. There are five different sets of equivalent posi-
tions or other equivalent objects., These sets are:
1) The central position invariant to all symmetry operations T-= (0,0,0)
2) Four positions X; on the three~fold rotation axes., These and the
following positions are given in table 2,

3) Six positions ﬁ' on the two~fold rotation axes.
4) Twelve equlvalent positions f? on the reflection planes.,
5) 24 general positions 3; apart from any element of symmetry.
The position vectors in the latter two cases are not determined uniquely.
For instance,ﬁi:(b,c,c) with b#c and 2¢®+b®=1 would do. For the purpose
of numerical calculation,we have arbitrarily chosen the vectors given
in table 2,
Table 2, The p081t10n vectors of the equivalent sets,

X hd 2 X i 2
Ay | INT OANT ANT | ¢, | 12 INT 1/2
A, | IN3 -IN3 -INT C; | /2 1/2 INZ
Ag ~ANF =13 INTF Cy INZ -1/2  -~1/2
Ay -1/3 13 -1/V3‘ Cg | -1/2 iINZ -1/2
By 0 0 Cg | -1/2 -1/2 INT
B, 0 1 0 Cq -1/NZ 1/2 =-1/2
By 1 0 0 Cg | =1/2 -INZT 1/2
B, 0 0 -1 Cy 1/2  =1/2 -1NZ
Bg 0 -1 0 || Co|-tNZ -1/2 1/2
B -1 0 0 Cyy | 12 -INZ -1/2
cy INZ 1/2 1/2 Cy, | =1/2 1/2  -ANT7
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Table 2, (continued)
X Y Z X Y Z
y | /3 V3/3 VB/3 Dy5| V3/3 ~1/3 -V5/3
, | /3 ~V3/3 -V5/3 Dy,|-V3/3  -1/3 V5/3
5 | -1/3 V3/3 -V5/3 Dys| V3/3  1/3 V5/3
4 | -1/3 =V3/3 V5/3 Dye|-V3/3  1/3 -V5/3
Dy V5/3 1/3  V3/3 Dyq| 1/3 -V5/3 -{3/3
Dg |-V5/3 -1/3 V3/3 Dyg| -1/3 V5/3 -V3/3
Dy | V5/3  -1/3 373 Dyg| -1/3 -V5/3 V3/3
Dg [-V5/3  1/3 -V3/3 Dyo| 1/3 V573 V3/3
D, | V3/3 V5/3 1/3 Dyy| VB/3 =Y3/3 ~1/3
Dyo|=V3/3 V5/3 -1/3 D,,| V5/3 V3/3 1/3
Dy, |-V3/3 ~V5/3  1/3 D,s|=Y5/3 V3/3 -~1/3
Dy,| V3/3 -V5/3 -1/3 Dyy|-V5/3 ~V3/3  1/3

‘The enumeration of the vectors of set D corresponds to that of the group
elements in table 1. ‘

These five sets of equivalent objects induce the reducible represen-
tations oO=A1, cA, oB, oc, and cD. Using the operations listed in table
1,we can calculate the induced matrices of GA ete, according to (3.3).

The calculation of the characters is even simpler, since they are equal
to the number of positions being invariant to the operation, The char-
acters of the irreducible and the induced representations are listed in
table 3.

Table 3, Characters of representations of Td

E 80 30, 65, 60y
|1 1 1 1 1
b | 1 1 1 -1 -1
E | 2 -1 2 0 0
7|3 0 -1 1 -1
7, | 3 0 -1 -1 1
° | 1 1 1 1 1
A4 1 0 0 2
2| 6 0 2 0 2
o |12 0 0 0 2
WP |24 0 0 0 0

From the character formula (2,10) then follow the branching rules
for the induced representations:

0 _ N N C_
o® =1y, ot =upm,,  of = apeEn,, of = Ap4EsTye2T, (22.29)
o = Ay +hy+2E43T, 430,

The decomposition of the representations according to these rules is
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We calculate them by formula (12.16),
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i.e., by inserting the position vectors of table 2 into the standard

functions (22,16-28), The results are listed in the tables 4 to 7.
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By the help of the preceeding tables,one can determine the s.-a, MOs
of every tetrshedral molecule arising from all types of atomic orbitals,
Taking the 3jm symbols from Griffith [5], table C2.1i.,one calculates
the coefficients K(ycpc,Aise,apa) according to formula (5.2). In the
paper [10] we already have elaborated the complete set of coefficients
with respect to the equivalent set A (i.e. the P atoms of P4 or P406,
the H atoms of CH4, and the ligands of many tetrehedral complexes). The

- most important AOs are those of species s/Ai and p/Tz. Since the coef-
ficients for the s-orbitals are trivially
K(cq,Aia, A1) = 5(c,a)-(K’i[Aaq),
we only repeat the coefficients for the p-orbitals in table 8. Because
of different phases in the tables of Koster e.a.{21] and Griffith {5]
we now get the opposite sign for the triads (ETZTZ) and (TZTZTZ)'

Table 8. The coefficients K(cq,Aia,sz)

A, A A A
Dt x ?1 z x y° z x y3 z x y4 z
acgqg
AyT,X ’12 0 o 3 o o 1 o o 1 0o o
AT,y o 5 o0 o & o o 1 o o % o
A T2 o o & o o 1 o o 1 o o 1
172 2 2z 2 z
Tohyt Vg‘v;\rg Vg-\rg_\%— -Vé _ngg -V—g Vg—r%—
s EET|EET [RET[EET
-1 -1 - -1 1
ToE 2 5 7 0 5 7 0 7 3 O 7 3 0
37 V2 7 |2 Nz 2 > V2
A I SR s SR R S R I S
T4 7'z |z 'z o'z o' O
N7 - - 3 32
P e A L O e S A S I A

As a further example,we calculate the coefficients K(cq,Bib,sz), which
are needed for the MOs resulting from the p/Tz-orbitals of the oxygen
atoms of P4O6. These coefficients are listed in table 9, The same coef-
ficients apply to the symmetry coordinates of the molecule:

Bb .
Qé Je _ > K(cq,Blb,sz)-ABip , (22.%0)

ip
where Aﬁ; = @ﬂBix,ABiy,ABiz) is the displacement vector of atom ﬁ;[;Z].
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Table 9, The coefficients K(cq,Bib,TZp)

B,y = B B B B B B
pi x y1 z | x y2 z | x y3 z | x y4 z | x y5 z | x y6 z
b c g .
V& V&
AyTx gvgovgv%ov_gvg_ovgoov_goov—goo
ATy o-gvg_ o-gv_g_ o¥2 o ov-go oV_-go ov-go
ATz 0o 0¥ |o o2 oo\fg oov-g oo\fg ooV-g_
i -1 1 -1
E 1,¢ 3 003 ojlooo|3 00|} o0oo0fo0o0o0
-1 1 -1 ' 1
E T,n 03 0flooo0flo3oloFolooofoio
1 -1 1 -1
E T, ©oo0o|ooz|oo0%|0oo0o0foo0F|o0 o0
1 V3 V3 = 3 3 -3
E Tx EVEOEOO_P-V;OEV;‘OV;OO 0 o
3 = -
T,y o¥2 o o-%g o-gvg o¥2 oo V_o_ ovgo
~\3 3 3 -3 3 3
7,2 oo-Y;oo-g o o¥2|o o o o'? ooV-g—
& 7% ~ Ve EEANEENEG
T,A,1 o o¥2lo¥2 ol[¥2 0o 0jo o 0 0 )
-3 V?r 3 - -
T,E 1 oo-yg——o-gov-g_oo ooV; oo 0 0
1 -1 -1 -1
T,E 2 ooo|o%o0|5o00looofo% ot oo
1 -1 -1 1
T,T,€ o3 0/l003 oo0oo0foFoflood|ooo
-1 1] 1 -1
T,T,0 3 oolooofloo0o 3|3 oo0joo0o0|0 07}
1 -1 -1 1
1,17 0oo0oo|zoo0lo3o0loo0o0|300[030
-1 -1 1 1
T,T,% 03 0loo0o3|ooofloFo|ood|looo
-1 -1 1 1
1,1,y 3 oofooo|loo3|Fo0oo0j000fl0o0 %
-1 1 4 -1 1 1
1,72 0003 00[0F0{000|300{ 030

22.3, Polyhedral isoscalar factors

Whereas the elaboration of the s.,-a. linear combinations of orbitals
and coordinates is a conventional technique, we now come to the central
point of our innovation, the group theoretical description of the topo-
logical structures by the various polyhedral isoscalar factors.

The four atoms of P4 occupy the positions E} given in table 2, The
atomic orbitals at these centres define two types of two-centre inte~-
grals distinguished by the edge vectors connecting the centres.

1) Both orbitals are located at the same centre, i.e, the edge vector

degenerates to 3? = 31-334'11, cf., page 21, Here and in the following,
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the equivalence of sets, i.e. ﬁ;n,ﬁ; for instance, implies such a nume=-
ration that o?k(g)=c§k(g) in addition to the ordinary equivalence of
the induced representations, GMAJGN. But this does not imply'ﬁ;=ﬁl! As
shown in section 3, this equivalence, ﬁlﬂfﬁ;, leads to (ﬁ;IMpmp) =
(ﬁz‘Nump). This means in the present case: (3?|0Aaapa) = (K;’Aaapa).
Since 3? belongs to positien E; only, the topological matrix (3.1) is
given by:

(AR L 5(1,1) 80k, 1) NTTET (22.31)
ik1/ = Oty ’ ' .

2) The orbitals are located at different centres. In contrast to set B,
there is only one type of coordination within the set A indicated by
the edge vectors §?k=X;-X%. These twelve vectors lie in the reflection
sAL cc. An adequate enu=-
meration of the edges then allows §ﬁfv6L. This correspondence can be

planes and therefore we have the equivalence ¢

made explicit by an appropriate choice of the coefficients in the rela-
tion (3.25): §?&=uiﬁa+uzﬁi. If we take uy=(1+Y2)V3/4 and py=(-1+Y2)V3/4,
we get g?é#d; etc., We now define the topological matrix of the trian-
gles -AASE by: A
T(Tipy) = 8(u, KR, TAZICT (22.32)
or equivalently

R |
z;;('ﬁﬁ)-(uiz’iwzx’k)y/z(-AAsK)’ =7 (22.33)
1

The topological correlations expressed by (22.31 and 32) are listed in
table 10.

A A
_ Table 10, Non-zero matrix elements of T(_ﬁﬁg) and T(_ﬁﬁi)
Ai 1234 Ai 1 1 1 2 2 2 3 3 3 4 4 4
Ay 1234 Ay 2 3 4 1 3 4 1 2 4 1 2 3
A A
Olanl 1234 Slﬂ’Cl 1 3 2 411 9 6 810 512 7

Basing upon these correlations,we calculate the polyhedral isoscalar
factors of the triangles -280" and -aash according to formula (6.6).

The result is compiled in table 11 on the following page. It differs
from that of [11] because of the different SALC coefficients of table 6
and the different order of the triple product axbxc, ’

In the same way,we treat the equivalent set B. The six centres listed
in table 2 are occupied by the oxygen atoms of P406. There are now three
types of coordination within this set:

1) The orbitals are located at the same centre again, i,e. the edge vec-
tors are 6%:3%—§kﬂ’§&. The topological correspondence is quite analo-
gous to (22.31):

+("BBY) = 6(1,%)6(k,1) VZTBY (22.34)

2) The orbitals are located at adjoining centres (for instance ﬁ; and

B
)
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A

~AAS

Table 11. Polyhedral isoscalars PIs( abc) and PIs Y

abe
abye | -aa0t(alg,) -an0t(num,) | -aasP(ale.) -Aas®(num.)
AgAy Ay 1/4 0. 25000000 1/4 0.25000000
T2T2 Ai V3/4 0.43301270 -y3/12 ~0.1443%3757
T,T, B - - -1/{&  -0,40824829
T,T, Ty - - 1/2 0.50000000
A THIT, V374 0.43301270 (Y2-2)/8 -0.07322330
T,A41T, V3/4 0.43301270 (Y2+2) /8 0.42677670
T,T,1T, -\B/4 -0,61237244 1/4 0.25000000
AyT,2T, - - -(Y2+2)/8 -0.42677670
T,A42T, - - ~-(V2-2)/8 0.07322330
T,T 52T, - - -1/4 ~0,25000000

T?). The 24 edge vectors are termed §B and are equivalent to the set D:
fnzﬁi. The description of this topologlcal correspondence is compli-
cated by the fact that the vectors piB +p2Bk having one zero component
may be equivalent but not equal to a vector of set D, In order to pro-
duce an identity, we resort to a certain vector product, which is well

defined with respect to the group Td:

fFx#, = (yzizyﬁéz + (zx#xd)éz + (xy#yi)?% (22.35)
The definition
= (V3/3)8; + (5/3)E + (1/3) [BxE], (22.36)
then yields § 3' etc. The full list of the correlations is given in

1171
table 12, which also indicates the non-zero matrix elements of the top=-

olegieal matrix:
¢('?§§ 8(V38 +V33k+{§’x'* +,3i§)/Vz(D7 (22.37)

An equivalent expres31on is:

'?E§>v2< -sBs)(V28, 35, A (ExBL1,) = 3 (22.38)

3) The third possibility is the locatlon of the orbitals at the oppo-
site positions like ﬁ; and EZ' The six edge vectors of this type are
termed TE*V?L and the topological matrix is in this case:

«(BBL) — 5(B}-B,, 28,) NZ(BY (22.39)
The essence of (22,34/37/39) is gathered in table 12, This compilation
then allows the calculation of the isoscalar factors of the triangles
of the type -BBOB, -BBsB, and -BBTB. These are listed in the tables 13
and 14,
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B B B
Table 12, Non-zero matrix elements of 1(-113129), 'r(']i3£]T_), and T( E’i?)
B; 123456 B; 123456 B, 11 1 1
By 123456 B, 4561273 B, 2 3 5 6
B B B
07 ~ By 12‘3456 T7 ~ By 123456 Sy~Dy | 115 4 14
B; 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
B, 1 3 4 6 1 2 45 2 35 6 1 3 4 6 1 2 45
S]]3_-«/D1 20 519. 6 922 11 24 316 2 1318 8 17 7 10 23 12 21
-BBOD -BBTC
Table 13, Polyhedral isoscalars PIs( abc) and PIs( abc)
abc | -BBOP(alg.) -BBOP(num.) | -BBrP(alg.) -BET(num.)
AiAiAi 1/6 0.16666667 1/6 0.16666667
EE Ai Y2/6 0.23570226 Y2/6 0.23570226
T,T o4 Y3/6 0.28867513 -V3/6 -0.28867513
MEE V2/6 0.23570226 V2/6 0.23570226
E A,F V2/6 0.23570226 V2/6 0.23570226
EEE -\2/6 ~0.23570226 -\2/6 ~0.23570226
T,T,E -1/V& ~0.40824829 ING 0.40824829
AyT,T, V3/6 0.28867513 -V3/6 -0.28867513
T,4,T, V3/6 0.28867513 Y3/6 0.28867513
E T,T, -1/6 -0,40824829 16 0.40824829
T,E T, -1/NE -0.40824829 -iNE -0.40824829
T2T2T2 0 0.,00000000 0 0.00000000
|-BBSB
Table 14, Polyhedral isoscalars PIs Y
’ abe
a b ye algebraic numerical a b yec algebraic numerical

AjAy Ay 1/6  0.16666667 E T,A7, | V3/6  0.28867513
EE A | -VZ/12 -0.11785113  T,E 1T,| V5/12 0.18633900

T,T, Ay 0 0.00000000 T,I,1Ty | =-1/12  -0.08333333
EE A, | -V&/12 -0.20412414 E T,2T, 0 0.00000000
A 1B 0 0.00000000  TpE 2Ty | -V3/12 -0.14433757

EAE | VB/12  0.20412414  TpTp%Ty| -VI5/12 -0.32274861
EE 1E V6/12  0.20412414 E 1,37, | -V6/12 -0.20412414

T2T21E 0 0,00000000 T2E 3Ti ViO/iZ 0.263523%14
ME 28 | -y2/6 -0.23570026  Top3My| -VZ/12 -0.11785113
B A28 | VZ/12  0.14785113  A1AT,|  1/6  0.16666667

EE2E | -Y2/12 -0.11785113 T,441T, | VI5/18 0.21516574
T,T,2E 0 0.00000000 E TpiT,| V2/12 0,11785113
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) .
Table 14. (continued)

a b ye algebraic numerical a b ye algebraic numerical
T,E 1T, V30/36  0.15214515 T,T,2T, -V15/12 -0.32274861
T,T,1T, | =-V2/12 =-0.11785113 a,1,30, | -7Z/6 -0.23570226
A,T,2T, 0  0,00000000 T,443T,] V30/36  0.15214515
T,442T, | =V2/12 -0.11785115 E T,3T, -1/6  -0.16666667
E T,2T, 0 0,00000000 T,E 3T,| VI5/36 0.10758287
T,E 2T, | -1/12  -0.08333333 T,1,3T,| =-1/12 ~-0.08333333

In the molecule P406,there are further triangles (or two-centre in-

tegrals) involving one position of set A and one of set B. The edge

vectors between directly adjoining centres are termed §?£ =K;-§; (for
and E;), whereas the indirect connection (for instance be-

ingtance E;

tween K; and

f;) is expressed by T?E =K;-§;. There are twelve vectors

in each set and thus §fﬁbfﬁﬁv 1° The topological matrices are given by:

The correspondences defined

—ABSAB
Table 15. Non-zero matrix elements of 111 ) and =(

-4BS
1K1

-ABTA¥
1%l

AB
w( )
w(

8(Y3, +(V2-1)E,, 28, ) VZ(CT
8(V3K;~(V2-1)By, 20, ) NZ(CT

in this way are compiled in table 15,
AB
)

=-ABT
ikl

Ay

sABffc
1 VG
AB
1

1
1
3

Ly ~C

1

1
2
2 - 4911 -6 -~

1 = = = =

-321911 - -

-4 -8106 -

1113112 222 2233 333 35 444 444
34561 234 5612 345 6 123 456

- -8 10

- 12

5-12 -7
-7 =5 =

(22,40)

(22.41)

Finally, the polyhedral isoscalar factors calculated from these cor-

relations are given in table 16,

-aBshB -ABTAB

Table 16, Polyhedral isoscalars PIs Y |and PIs Y

abe abe

a b ye -ABSAB(alg.) -ABSAB(num.) —ABTAB(alg.) —ABTAB(nulef

Aghy Ay "y6/12 0.,20412414 V6/12 0.20412414
T,T, Ay y6/12 0.20412414 -y6/12 -0.20412414
AME E V3/6 0.28867513 Y3/6 0.28867513
T,T, E -V3/6 ~0,28867513 V3/6 0.28867513
T,E Ty V2/4 0.35355339 V2/4 0.35355339
0, T, V2/4 0.35355339 -V2/4 -0.35355339
A THIT, 1/4 0.25000000 -1/4 -0.25000000
T,4,1T, (V6+Y3)/12 0.34846171 (Y6+4Y3) /12 0.34846171
T,E 1T,| (V3-Y6)/12 -0,05978658 (¥3-Y6)/12  =0.0%978658
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Table 16. (continued)
ab ye | -ABs*B(alg.) -ABS*B(num.) | -aBT*B(ale.) -aBr*B(num.)
T,T,1T, -1/4 -0, 25000000 1/4 0. 25000000
Ai 22T2 -1/4 =0.25000000 1/4 0.25000000
T,4,2T, (Y6-y3)/12 0.05978658 (V6-y3)/12 0.05978658
T,E 21, | (V3+8)/12 0.34846171 (V3+6) /12 0.34846171
T,T,2T, -1/4 ~0.25000000 1/4 0. 25000000

In contrast to the edge vectors connecting centres of the same set,

SA for instance, we have to consider SAB and the set of the inverted

vectors SBA as sets of inequivalent objeets. But both set induce the

same representation oc and an appropriate numbering yields gBA~§?B~61.
The same applles to ﬁBAVT%BVCI. We therefore may cheose
AB
-BAS _ ..¢=ABS -BarTBA -AB
Ciig ) =7y ) and o ) = vCigy 5, (22.42)

which yiels simple relations of the polyhedral isoscalar factors:

-Bas® -4Bs*B -par® . [-Bar®*
PIs Y |= {abc}+PIs Y ), PIs y |={abe}:PIs Y (22.43)
bac | abe bac i bac

At this point one may ask, whether the choice of the topological ma-
trices is unequivocal, Indeed, the matrices are not determined unambig-
uously, but a different choice of the topological correlations causes
only a unitary transformation of the polyhedral isoscalars (a change of
phase in the multiplicity free cases), We demonstrate this by an exam-
ple. If we replace (22.40) by

AB
(4B = 5(;V3Ei+(V§+1)EL,281)/Vz(07, (22.44)

the first correlated triple, for instance, is Ai’ i,06 instead of Ai’
Bi,C3 and we must rearrange table 15, The resulting new polyhedral iso-
scalars are related to those of table 16 by the transformation

| -ABSAB -4BghB
PIs| ¢ |= u(c) GPIs G (22.45)
abc abe

with u(Ai)=+i, u(E)=+1, ﬁ(Ti)=-i, u(T2)11=u(T2)22=0, u(T2)12=u(T2)21=-1,
Similar relations,caused by different correlations between the same
sets,are found by inspecting the tables 13 and 16:

-BBO -BBT® -ABS -ABT
PIs( abo’ p(b) +PIs( abc), PIs by p(b)+PIs by (22.46)
abc

with the phase factors 9(A,)=+1, 9(E)=+1, and 9(T,)=-1.

The factors calculated so far also apply to strucures like Be4014
and [Cu(CN)4] , where the positions of type A occur twice, let us say
A and K. The isoscalars within the set A are trivially egqual to those
of set A, There are two types of edge vectors comnecting centres of
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both sets. If both centres lie on the same axis, we have ﬁAA-Al-A{AIE;.

In the other case the distance vectors Vﬂ induce the representation oo

and therefore 71 ~§ia,E?. From these equivalences follows:

o AN ~advha -aast
PIs("2)) = PIs( ‘l*f;g), Pis| v |=7s| v (22.,47)
apc apc

The molecule C(CH3)4 requires the additional calculation of the poly-
hedral isoscalars involving the positions of set C.

22.4. Polyhedral isoscalar factors of the second kind

The next step is the consideration of the triangles subtended by
three atomic centres, Within the scope of this principal case study; we
calculate the complete set of polyhedral isoscalars of the second kind
involving three centres of type A. With regard to the main application
of these isoscalars in (8.14),one can confine the calculation to the
subclass (8.15). In set A,there are five different types of triamgles
corresponding to possible three~centre integrals:

1) All three centres coincide., We mark these “null triangles by AA
There are naturally four triangles of this type, i.e. i’ The topo-
logical matrices of the second kind according to (7. 16) correlate each
triangle with its second vertex A and with the edge vector connecting
the first and third vertex, i. e. w1th Oi‘

2 B0 = o(MOY - 61, 1060c,2) NTTET (22.48)

2) The first and the third centre coincide. These degenerate triangles

Zﬁ correspond to the edge vectors connecting the first and second cen-
X A

tre, i.e. X4 Sl'VCl and

ZA
(l k 1) = ( x1i ) (22.49)

3) The first and the second centre coincide. This set is termed.Zi.

ZA ~§ C again. In this case,it is easier to express the correlatlons
1n a flrst step by the topological matrix (7.7) and to calculate ¢ by
the inversion of (7.17):

o (Aif.g) = E (AACB 'ﬁf)v Z{=ABS) (22.50)
In the present case we have
A
(Zi ) = 2 (Ta)8(km) (22.51)

and (22 50) yields-
. (Zis 4 - § (‘ﬁf 'AAS)\/Z(-AASK (22.51)

The non-zero matrix elements taken from table 10 are glven in table 17.
4) The second and the third centre coincide. This set Z is different,
but equivalent toZ , 1l.e0 2221~§A/VC1. In this case,the correlations are
given by
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(Z by < a<m1)r<'“*s) (22.53)

and via (22, 50) by

2 % s ﬁ) - ET(-AAS -AAS)V‘——'TZ( AASH) (22.54)

The result is again compiled in table 17,
5) Finally there is one set of 24 ordinary triangles termed ﬂﬁ'with
Aé'~ﬁ;. In the sense of (7.8), the correlation of the triangle (i.e. the
number of D) and the vertex numbers is achieved by the linear combina=
tion of the position vectors p&1;+uéﬁ;+pgfi with d&=(1+V§)/2V§, dé:
(1-Y?)/2(3, and u%:(VBZV—)/ng} We therefore define the topological ma-
rix b .
¢ v (e ﬁﬁ%)_ 5(p&]&+p§ﬁ;+p%11,fa)/vZZD5 (22,55)
Wwith (22. 32) eq.(22.50) results in:

©° (% f. 11?1) = Eé(u’ifkm/gﬁwgzl,ﬁ;)Nuifszzl,C )/W (22.56)
These correlations are listed in table 18,

Ashy
i%r m)

A, 11111122 22 2 233 53 3 3444 4 4 4
Sh~c,| 12345614 89111236 781011257 91012

A | - o e am 4 - 9 - - - - - ? - -
A -~ - - - - - - -~ - - - -
Fz. (O 12534 11 9 6 10 8 5 12 7

Table 17, Non-zero matrix elements of =t (Z S A) and 1 (

Table 18, Non-zero matrix elements of <t (e i ﬁ)

Al 1 1 111 12 2 2 2 23 3 3 33 3 44 4 44 4
~C. 8111297103 6 2 5 74 1 9122 5 41 8116 3

~D;{21 17 16 28 24 1 14 20 10 23 7 2213 359 18 21 519 12 4 15

S

Al

> o

From (7.22) now follow the polyhedral isoscalar factors of the sec=-
ond kind. Because of (22.48 and 49);the factors of the triangles AA and

ZA are very simple:
PlIs (A° o Ay

-A A 0
abe/ T PIs( ab c) (22.57)
ZfoAA -p 4 st
PIs? = PIs a (22,58)
a bec bca

There remains the tabulation for the triangles Zi’ Z and A%, 1t is
given in the tables 19 and 20. Comparing the entrles of table 17,we get
the following rélation, where the unitary matrix is that of (22.45):

AA AA
PIs? %25 . ¥ u(b) ,PISZ(ZaiB 4 (22,59)
' BB *
abe B abe
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yAghy Thshy
Table 19, Polyhedral isoscalars PIs?{alg and PIs? aZB
abel abe

aa Bb ¢ ZI;SAA(alg.) ZI;SAA(num.) Z%SAA(alg.) ZéSAA(num.)
Ay Aghy V3/12  0.14433757 V3/12 0.14433757
Ay1T,T, | (2V34Y6)/24  0.24639964 (VB=2y3) /24 ~0.,04227549
A,21,1, | (2V3-Y6)/24  0.04227549 | ~(V&+2{3)/24 =0.24639964

E E A V6/12 0.20412415 V6712 0.20412415

E T, 1/4 0. 25000000 -1/4 -0, 25000000

E 17,0, | (V&-2y3)/24 -0.04227549 | -(2{3+{6)/24 -0.24639964

E 21,7, (V6+2y3) /24 0.2463%9964 (2y3-Yy8)/24 0.04227549

Ty Tyhy 1/4 0,25000000 ~-1/4 -0, 25000000
,ET, -1/4 -0.25000000 -1/4 =0.25000000

Ty T4T, V2/8 0.17677670 -y2/8 ~0,17677670
T,1T,T, (1-y2) /8 -0.05177670 -(1472)/8 ~0.30177670
T,21,T, (1+Y2)/8 0.30177670 -(1-y2)/8 0.05177670
L LY 1/4 0. 25000000 0 0.00000000
17,2154, 0 0. 00000000 -1/4 -0.25000000
1T, A,T, (V6+2y3) /24  0.24639964 (V6+2Y3)/24  0.24639964
ir, E T, (Y6-2{3) /24 =0.04227549 (V6=2y3) /24 =0.04227549
T, 4T, (1-y2)/8 -0.05177670 -(1-y2)/8 0.05177670
1T,1T,T, -(4+V2)/16 0.33838835 V2/16 0.08838835
11,21,71, -V7/16 -0,08838835 (44V2)/16  0.33838835
21,1T,4, 0 0,00000000 -1/4 . ~0.25000000
21,21 ,4, 1/4 0.25000000 0 0.00000000
21, AT, (2y3-y8)/24 0.04227549 (2y3-y6)/24 0.04227549
27, E T, (2y3+V6) /24  0.246%9964 (2Y3+(6) /24  0.24639964
21, 1,7, (1+y2)/8 0.30177670 -~(1+2)/8 -0.30177670
21,17,1, -YZ/16 -0,08838835 -(4-Y2)/16  -0.16161165
21,27,1, (4-y2)/16 0,16161165 VZ/16 0.08838835

; L[4
Table 20. Polyhedral isoscalars PIs g E .

aa b ¢ algebraic  numerical aa Bb c algebraic numerical
Ay AyAy V3/12 0.14433757 1E 2T,T,| -(2-Y2)/16 -0.03661165
Ay1T,T, | -V6/24  -0.10206207 £ 1,1, =V3/24 ~0.07216878
4y2T,T, | V&/24  0.10206207 g g Ay V6/24 0.10206207
Ay T,T, V6/12 0.20412415 2E 11,1,| (V2-3)/8Y6 -0.08092433
iE B4 | VZ/8 0.17677670 2B 2T,T5|=(V2+3)/8Y6 -0.22526189
1E 11,1, | (24Y2)/16 0.21338835 & TiTp 1/8 0.12500000
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Table 20. (continued)

aa Bb ¢ algebraic numerical
imi TyAy (1+2(3%) /24 0.18600423
iry E T, (-1+2y3%)/24 0.10267090
1Ty 7,7, (2y10-y2-2y%) /48 0.0002%671
1T,1T,T, (=1-2y6-2y5+(2=2Y7%) /48 -0,25877091
1T, 21,1, (-1+2y6-2y5~y2~2{3) /48  ~0.11357233
21, TyAy Vi5/24 0.16137431
21y E T, -Y15/24 ~0,16137431
2wy 1,1, ~(Y30+2y86) /48 -0,21617094
21,17,T, (=YT5+2y3+V30)/48 0,10559050
21, 21,1, (-VI5+2y3-{30)/48 -0.12262724
31, Tyhy (V2-y8)/24 ~0,04313651
31, ET, ~(V24Y6) /24 ~0,16098764
3T, 4T, (~1+2y54V3) /24 0,21684112
31,11,T, (2y3-y2~2{10+2+V6)/48 0,00364213
31,2T,T, (2y3+V2+2{10+2-Y6) /48 0.22402877
17,1154, (1+3+V10) /24 0.24559702
17,274, (1+V3-y10)/24 -0.01792612
1T, AT, (V3-3-y15)/36 -0,14280%68
1, E T, (VE-3y2+2y30) /72 0.12724028
T, 0,1, ~(1+V3) /24 0.11383545
1T,17,1, (VZ2+2-2Y3+V6) /48 0,04999170
11,21,1, (V2=-2+23+Y6) /48 0.11099594
2r, 17,4, (Y30-2y3)/48 0.04194008
21,274, (Y30+2y3) /48 0.18627765
21, AT, (YI0+Y2)/24 0.19068713
27, E T, (V5=-2)/24 0.,00983%617
21, 7,1, V30/48 0.11410887
21,11 ,1, (-V15-y30)/48 ~0.19479602
21,211, (-Y15+y30)/48 0.03342171
30,174 (V2-2y6+2{5)/48 0.02057021
31,214y (V2-2y6-2y5) /48 0.16576879
31, 44T, (V646Y2~y30) /72 0.07579924
31, ET, (V3+6+2Y15) /72 0.21497247
31, 1,7, (~V2+2y%) /48 0,07259929
31,1T,1T, (1+V2+2Y6=-2V3) /48 0.08018940
31,211 (1-Y2-2{6-2{3) /48 -0.18286031

272



112

23, Case study: Matrix elements
In this section,we apply the structural coefficients of the preceding

section to the reduction of matrix elements, We begin with relations re-
ferring to no special type of AOs and procede step by step from the re-
duced matrix elements of the s.-a. MOs to the rotational invariants be-
longing to the integrals of GTOs. Since the representation of one AO by
a sum of GTOs having the same angular momentum quantum number only en-
hances the complexity without further systematic insight, we shall con-
fine each A0 to one GTO. Because of clearness,we also take the simple
example of the molecule P4. The MOs of this molecule involve s- and p=~
orbitals:
{F(41000) = VI7&7exp(~a® [F-E; |*) (23.1)
{Flaiotmy = ~2ivexp(~a® |T-] |*) ca|T=E; | oY, ((F=E))/IT-R}))  (23.2)

These orbitals transform according to the representations A1 and T2 of
the group Td:

Jaioon, D = {4100 (23.3)
jai017,p> =§ jai01m) dmf17,p> (23.4)
From these AOs we build up the s.-a, MOs
nd :
f(4e,004,)ep > = E(AilAepe) » |ai004, (23.5)
with e=A, or T, according to (22,29), and
| (4e,017,)cp > = ?'_pK(cpc,Aie,sz) ' ]A101T2p> (23.6)

with e=A1 or T2 again and ¢ from the product ex T2. This means c=T2 if
e=A1 and c=A1, E, Ti’ T2 if e=T2. The coefficients are given in table 8,

23,1. Step one: From the reduced matrix elements to BRMs
We now have to calculate three types of invariants of the molecular

Hamiltonian H=T+QA-VA. The potential operator is defined in (8.10). The
invariants are:

1) {(4e,004, )ellHl|(4e,004,) >

2) <(Ae,01T2)cl|H||(Af,01T2)c>

3)'<(Ae,01T2)cuHN(Ac,OOAi)c>

Since the Hamiltonian is a scalar operator, (5.13) applies reading
nows
{(4e,n 1 a)clHI(Af,ny 1 D) > (23.7)

= %GEOi(Aa,Ab;ec,fc;Sck)(AnalaallHllAnblbb)Sck

with the geometrical factors

GEO, (Aa, Absec, feySok) prys " S(23.8)
- T k
= {c*b} ab*k}VZ(-AAS)AIRG/ATHE- { g+ +5+} +PTs g O
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0f course, these factors are in dependent of the special A0 quantum num-
bers no, la’ Ny, 1,,and of the exponential parameters.
The involved BRMs are
in case 1): (A00A,||H[|A004,) g, with Sk = of4, and SAAi,
otr,, sha,, shr,, shir
2 1 17, 2,
and S 2T2,
in case 3): (AOIT,lIHIA004,)g .y, With Sok on,, stir,, and shor,.
The geometrical factors of the relation (23.7),calculated by (23.8),

are listed in the tables 21-23,

1

A

in case 2): (AOiTzllHllAOiTZ)SOk with Sok = 07Ay,

)

Table 21, The geometrical factors GEOi(AAi,AAi;ec,fc;sk)

A A
- Sk 0" A S7A
ec, fc 1 1
Aghy, Aghy 1/2 V3/2
TyThy ToTp V3/2 -1/2
Table 22, The geometrical factors GEO, (AT, AT, jec,fcySck)
2 A A A, YR A
Sok| 074y 0°r, S S“E S°Ty ST, s 2T,
ec fec
TohysTohy V3/6 -y2/6 -1/6 -1/% 1/3 1/6 -1/6
T,E ,T,E V6/6 1/6 ~y2/6 -\2/3 ~{2/6 -V2/12  V2/12
TyTysToTy 1/2 V6/12 -y3/6 V3/6 V3/6 -V3/12 V3/12
T,T 0y THTy 1/2  <\6/12 -V3/6 V3/6 -\V3/6 V3/12  ~\3/12
AyTop ATy 1/2 0 V3/2 o] o] 0 o]
7-2 . {242
AyT5, 5T, 0 V3/6 0 0 0 = -3
‘ 242 D2
T,T50 24T, 0 V3/6 0 0 0 % - 4=

Table 23, The geometrical factors GEOi(ATz,AA sec,feypsok)

T sok| o, shir, slz‘zqr2
oAy Ayhy V3/6  (V2+2)/4V35 -(V2=2)/4V3
AyTo, T, Y376 (V2-2) /43 -(V2+2)/4V3
ToT0, T,T, -y6/6 V3/6 ~\3/6

Using these factorsyan example of the relation (23.7) is given by:
(ar,,017,) T, IHN(AT,, 01T,) T, > = (1/2)-(AomznﬂlIAOiTz)OAAi
+(V5/12) + (01T lIANAOLTY) oAy ~(V376) (4027, [HIAOLT,) ghy
+(V3/6) (AOiTZIIHIIAOiTz)SAE +(Y3/6) - (AOiTZIIHIIAOiTz)SAT
-(\[?/12)-(AOiTzﬂﬂller.L‘z)SAIT2 +(\(’3‘/12)-(AomzuHIlemz)SAZT2

(23.9)
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The same analysis applies to the reduced matrix elements of the over~
lap matrix. We only have to cancel the Hamiltonian in all relations of
this subsection. The energy eigenvalues of the symmetry species E and

Ti then s:.mpl are:
ATZ,OiTZ)cﬂHll(ATz,OiT )o>

E(e with c=E, T (23.10)
(e) = (@ TZ,OITzic"(ATZ,GiT S_S O |
Since the species A1 and T, occur twice and thrice, there remains a two-
or a three~dimensional eigenvalue problem in these cases,

23+2, Step two: From BRMs to TRMS

" The improper BRMs of the potential operator VA are further related
to the TRMs of the triangles A‘g, Z‘g, Z‘l;, Z‘g, and A* by formula (8.14).
More precisely we have the following relations (23.11) and (23.12):

(An 1,8l v, Any 1, b) (A
= ; VEZWBY-PIs? |y

Y
vhere the summands are determined by the (degenerate) triangles sharing

the (degenerate) edge OA, ice, dy= A‘g, Z‘gi, and 2‘32. The coefficients
of this relation are listed in table 24.

ot (23.11)

-1
. “(anallar™lany 10) g 9
1

A
O™A
Table 24, The factors YZ<Z(A)+PIs’ ﬁ ‘a
1
‘ A A A
XAYI Al I r2
Ay 1 V3 -

r, V3 (WRINZ (B-{BINZ

The corresponding relation referring to the edge SA is given by:

(4n 1,80V, [0y 10) GA A shy
?; Yi2.Z(A)-PIs (y g

i ,
where now A = Zi’ 2, AA and y=1, 2, 3, The coefficients of this rela-

(23.12)

(gl paliar ™t llany1pb) gy s

tion are listed in table 25, A AA
) S
Table 25, The faetors Y12+2(A)PIs? yg
k A
1
by x4 =5 A
agyk
Ay 1 1 B
1E V2 B V3
2E - - 1
1T1 ﬁ "'V-3_ (1+V_1_2)/W
21y - - 215
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Table 25. (continued)

A zh zh s

vk 4 1 2

31, - - (V3-3)/3

11T2 V3 0 (143 10) V&

121, 0 -3 (V5-y2) /Y&

131, - - (1~ 12+Vib)/v1‘2

a1r, 0 -3 (1+4/3-YIO)NE

2om, | V¥ 0 VSN

231, - - (1-y12-yI0) N12
Applying these results,we give an example of (23.12):

(AOiTleVAIIAOj.Tz)SATi = V’3‘-(AOiTzllAr'illemz)ZJi&Ti (23.13)

-3 (AOiTzllAr-illAOiTz)zéTi +((14YT2) B) « (a011, | ar~ Y| n017,,) Atan,

+2YT5- (4011, [lar~Y s011,) aton, +((1-Y3) /73) - (a01 1, llar™ Y| A01T2)AA3Ti

23,3, Step three: Ab initio calculation of BRMs
In the case of proper BRMs,we can relate them to the rotational in-

variants of the two~centre integrals according to formula (15.2), Be-
cause of (12,14), this formula reads for a scalar operator:

1. +1
b
(An,1 allTlan, 1y b)g o = (-1) 2 °yTn-dime

. 1+1bj . . (23014)
-Je(see,3) s 18| % e)-(nalaﬂ -9, TIny 1, >
The expansion coefficients c¢(Sece,j) are listed in table 26,
Table 26, The coefficients c(See,j)
S ge ,j c(See, i) S ee 43 | c(See,3)
o* 4,0 2 Nan stor,,1 1Y874n
ot e, 320 0 sf 5,2 Yi5/8%
s* 44,0 Viz/am str,,2 ~y15/8%
stir,,1 1YB672% ster,, 2 Vi5/8%
The special cases of (23.14) are:
(AGOAiHT"AOOAi)QAAi = 2. Qollo®,rloc>° ( )
23.15
A
(AOOAiuTﬂAOOAi)SAAi = Y12+ Qoll-s*°, 1fj0d)°
(AOiTzllTﬂAOOAi)OATz =0
A
(4017, 1714004, ) Ay = =32~ Otll 521, 2flop .54 (23.16)

(4017, 17114004, ) gA o RREIED o1ll-s21, milogpt.sh
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2+<01(10°, Tllo1)° 1

(AOiT2||T||A01T2 ok A

(Aomzllm AOiTz)OATz =0

(A01TNIT JA01T,) A, = VIZ:<01f-5"°, Tllo1)°

(8017, lIT(1801T,) An = VB Q1ll-s*2, Tljo1)?- (s*)* b (23.17)
(8017, fT|A01T,) Ay = O

(a017, | TRAO1T, ) A 1,7 -3y5Q1) -5 02> 2. (s)?
(4017, 1714017, ) (A 207 5601 l-s42, T flod? . (sh)? J

Again, the same relations apply to the overlap matrix, if we omit the

operator T, In both cases,the matrix elements are reduced to six inden
pendent parameters, the rotational invariants.,

Up to this point,we have made no reference to a special system of
orbitals, In order to calculate the rotational invariants, we do this
now and choose the Gauss type orbitals of ref.[46]. By comparing for-
mula (13.3) to formula (4.1) of [46],we conclude:

+1
bt .
&gl "AB fin,1 b)@ Vi/4m.(~1) ta* gaB aB(n 2y 3110 4B) (23.18)
where a and B are the orbital exponents of the bra- and ket-orbitals
respectively, We use the following abbreviations:

= ap/fa® +p2, eaB = va2+62, Pp = arctan(o/B) (23.19)
In the same wayythe comparison of (13.3) to formula (4.3) of [46] yields
the rotatlonal 1nvariants of the kinetic energy:

(‘ffs Jom)VITAT (1) 2 é’aB 0 (myny e, 31,1, 43)

According to (4.2) of [46],the functions e_.(...) are given by:

aB(
aB(n nb’jla b’AB) , (23.21)
= [Nj oo, jIICPaB"n 1a!nb b’J] (1'(2/29 BVZ:H )e o (faB’NJ’AB)
with ¥ = na+nb+(la+lb-g)/2. Using the coefficients and Gauss-Laguerre
type functions listed in appendix 3, we obtain the following six invar-
iants:

<ollo®hooy®
©oll-s*°lloo>°
G1ll-s*oopt

W4Q;B
(W/4G;B) * exp("g;BSAz )
- (mﬁ EaB/zeiB ) . EXP( -f;B SA2

(23.22)
Qulo®lo)° = BTﬁgaB/zeiB
G1ll-s*M101)° = (VITE,/200) (326555 ) sexp(-£505%)

H

Q1ll-s"2] 01)? -(V’é’?cggﬁ/eiﬁ) -exp(-;fxBSAz )
And with respect to the kinetic energy,we get:
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<ol10°,1100»° L 1&12; o /4me3
ol -, mllo0y? = (VA §a6/4m9a6) (3-2£545* ) -exp(-g505™)
ol -st, moodt = ~(yA? ;;Bs/zmeiﬁ) - (5-255,55"% ) rexp(~£5,5™)
Q1l0%,Tf01>° = 1573w’ gf‘xs/zmeiB
Q11 -5, Tljo1)° (V—mZ;;B/Zme“B).(is-zo;;B 542 4agh st sexp(-5205™)
ul-s™ ,2otd? = ~(VEm" g3 /mee) - (1-28505"%) exn(-ghos™)

We finally come back to the example (23.9). Inserting (23.17 and 23)

into (23.9) yields thé reduced matrix element of the kinetic energy
with respect-to the s.-a. MO of species T,:

{ar,,017,) 2, T f(AT,,01T,)T,>

= 10, ToLd° - <Oi||-SA°,TIIOi>° Y172 Q1l-s" ,pllor)?.s*

= (V33 €5 /2me o) - [15- (1568505 ) sexp(~£5,55™)] (23.24)
The corresponding element of the overlap matrix is:

QAT,,00T,) T (AT, 01T,)T,> = (3\{'375“6/2946){1 ~exp(~ fthS )] (23.25)

(23,23)

23.,4. Step four: The ab initio calculation of the TRMs
There finally remains the calculation of the TRMs of the nuclear at-
traction, Working in the AB~PC scheme, we have the following relation
of TRMs and rotational invariants, which is quite analogous to (15.14/
15):
(a9 allcr~L|Bp,b)E
Pa v Ayc
Jpnd L
:GEO (A1,aa,Bl, pbyChycsTiL) gn 1 I8, PCJiIBN, 10" ,

JJL
where the geometrical factor is given by:

GEO’S(Alaaa,Bleb;CAyc;JjL)= 4n(2T+1)YI7dTmes _ T &° (Aye,st.6dney)
NeuoT

(23.26)

4.t (23.27)
.Is if%bi Is ;Ii LcT$+'?:+ .sgg(ABA)st(PCA)
b cTle \c de” Iy N

With respect to the group Td and to the low angular momentum guantum
numbers, several multiplicity indices become obsolete, Furthez;all cen-
tres involved are of type A:

(An 1 afar” uizmblbb)m(c GEO (A1,a,A1, bsAbycs T L) . (23.28)
J
w1th «din,l IIAAAPAAIIAnblb>

= 4n(2L+i)Vi7dimc Is( abbL+)Is(L +J+)c (Aye,st. édne)Séd(AAA)S (PAA)

In order to save space, it is advisable to compile the compound coeffi-
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cients
o® (Ayc, (7)Le) - S _
= V(2L+1)/dimc3% neIs(cd+g+)cz(Ayc,st-§dne)séd(AAA)S%e(PAA)-
These coefficients can be calculated directly:
2 . ~1e—_ LItjt ASAy,c dte?
¢ (Ayc (7j)Le) = V(2L+1)Z(A)dime Is(S+5+)>  w(322)( )
’ %__e: cd’e % Jrm® p.PyPe  (23,31)

-(Aycpch)<S_;'sol Jdpd> <'P_II;]301 jepe>

(23.30)

According to section 13.3.,the vector ?; belonging to 5; is determined
by the topological correlation ‘

5> - ~AAS e -

P, = V—Z('S')ET( wln) s (B +%E) ) /(a® +p?) (23.32)
The isoscalar factors and s.-a. solid harmonics for this calculation
are listed in appendix 4. The results can be checked by the sum rule:

Fdimc)c?(Ayc,(Jj)Lc)F: 7(A) (aa) 2T (Pag) 23 (2041) (2341) /267°  (23.33)
’YC

We arrange the results according to the triangles involved. Since the
branching rules of the group chain R(B):>Td depend on the inversion
property of the representations, we add the indices g or u to the quan-
tum number L,

1) The triangle is A%, This means: A=A}, s=0*, aa =0, Pay=0.

c* (B54y,(00)0,4y) = 1/2n (23.34)
2) The triangle is £, This means: A=F%, s=0%, an,=0, Pa =st.
c? (X‘gAi,(OO)OgAi) = V3/2n cz(zgmz,(oz)zgmz) = ~y30s™ /8
o (zhe,, (01)1, 1)) = ~1VBst/4n o2 (hor,, (02)2,1,) = V308* /en
cz(ZﬁZTZ,(Oi)iuTz) = -1y8sh/4n o2 (ZﬁE,(oz)ng) = V305™2 /8n(23 )

3) The triangle is £4. This means: A=3}, s=st, any=sh, Pay=p®sh/(o®+p%).
Table 27. The coefficients c? (Zli*yc,(Jj)Lc).'
2 2

J j L yc [¢] J jL «vyc c
000, A V3/2n 11 2 21, | -3 /4n(a® +8°)
g 1 A g 2 2 QA2 2 .2
101 1T iV8s™/4n 112 E |-38°5"/4n(a”+p7)
‘ u 2 A g Az
101, 21, iV6s™/4n 202, E Y305 /8=
0 11, 17,|1y68°s"/4n(a®+%) | 2 0 2, 11, -y50s™ /81
0 1 1, 21,|1VEps"/4n(o®+p%) | 2 0 2, 2m, V30542 /80
110, 1 -3825% /on(o®4p7)| 022, B V35084582 /8 (a? +82 )2
111,01 0 0 2 2, 1T, | V3084542 /8n(a® +p% )2
112, 1, 382582 Jan(a? +8%)| 0 2 2 2, | V3084582 /8 (a? +8% )2

4) The triangle is X5, This means: A=5h, s=s, amp=s?, Pap=o® sh/(a?48%).
¢ (Shye, (33)Le) = (=a® /p?)3c* Ehye, (39)Ic) - (23.36)



119

5) The triangle is A%, This means: A=f%, s=s*, an,=s®, and Pa,=
SA‘Va*+B“+aEBE/(a2+BZ). The distances S"(between two vertices) and
A (between vertex and centre) are related by A=SA-V3781

Table 28. The coefficients c®(dyc,(Jj)Lec).

J 3L wye c? (Aye, (J3)Le)

000, 4 ‘ V’674nA

101,11, 1(V3+3)8%/6n

101, 21, : iy10s4/4n

101, 31, [ R EZEr
011,11, 1SR (-VT5 (o +62 )4V 3B2 =602 ) /67(a? 462 )
011, 21, iSA(VE(a2+BZ)+V1582)/4n(a2+Bz)
011, 31, iSA(Jf?ﬁ(a2+Bz)+V3B2+6V?d2)/iZn(a2+Bz)
110, A 75" (a2 =82 ) /4n(o? 462 )
111, 1 s (Y104 2+2Y8) /8

111 em s (Y30-y%) /8

111, 31, 5% (V541-73) /4

112, 18 366% 5™ /8n(a® +6%)

112, 2% 2™ (207 482 ) /8n(o? +82 )
112,11, | -s% (Y5(a® -6 )+ (14Y3) (o2 +8%)) /4n(o® 467 )
112 2, %2 (VB(a? -p% ) -30( o2 +82) ) /8n(a? 467 )
112, 3, %2 (<{T0(0% =62 ) +(2VB=YZ) (a2 +82 ) ) /Bn(a? +62 )
202, 1E V1552 /81

202, 2 355%2 /81

2 02, 1T, -5V8s"2 /121

2 0 2, 21, V5542 /41

202, 31, : -5y3s42 /124

022, 18 3052 (at+2a?82) /4n(o? 462 )2
022,28 VI0s™2 (a*-20% 32 -28%) /4n(a? +52)?
022,11, sA2(5a252-\/‘§a2(a2+32)+\f1_5’52(a2+52))/3n(a2+32)2
022, 21, SAZ(V3_0a2[32+5V'3'a2(tx2+Bz))/6n(tx2+Bz)2
022, 3L, 5" (5V2u? 62 - 3700 (a° +6% ) -6Y3082 (o +8%) ) /6n(o® 462 )2

These last coefficients are rather complex. In order to avoid this com-
plexity, one has to transform the three-centre integrals into a scheme
of distance vectors, which is independent of the orbital exponents «
and B.

With these results,we determine the geometrical factors. From (23,
29 and 30) follows: 4
GEOg (Al 2,AL byAdycyJJL) = 41:-\[E+T-Is(iall)bf})-c2 (Bye,(73)Te)  (23.37)
Since the isoscalar factors with 1a,lbsi are very simple, we get the

following equation:
GE05(Alaa,A1bb,AAyc;JjL) = 4nydimcec? (Aye, (73)Ic) (23.38)
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We now come back to the example (23.13). Using the tables 27 and 28y
we obtain:

(AOiT-Z(IAr‘jIAAomZ)ZjixTi: 0, (a01t llar~Ylo1m,)5sA, = 0, (23.39)
(AOiTzllAr-i"AOiTZ)AAYT; 473+ (AyTy, (11) 1,7, ) Coall anjy PAi"AO%%; )

Therefore the BRM of the operator VA is given by one rotational invar-
iant only:
Az 15,1 1
(AOiT2||VA||AOiT2)SATi= (382 /2) (V5+T+10V6-2y30)<a01llaa; Pazll so1) (23.41)

As in the preceding subsection,we have not yet made reference to a
special system of orbitals, We do this now in order to calculate the
rotational invariants of eq.(23.28). For the Gauss-type orbitals of ref.
[46] we have the general relation (A2,14), This relation now reads:

J ) T J o) .
o1 llany agfiaoipy =(41t/(2L+i))§aBGgB'naB(OO,Llalb,JJ,AAA,PAA) (23.42)
According to (5.8) of [46) the functions ”ZB are given by:
0 . -2 .
00,T1.1_,Jj,Ak ,PAs) = =470 J,nj,H llo1_,01,,%
naB( sl losddyafiy, A) 4 0‘5%[ 20y IICPOLB a? b’] (23.43)
o] o
0 (gaB,NJ!AAA)'(P (eaﬁsn'ijsPAA)
The sum is limited by 2N+2n=1a+lb—J—j. Using again the coefficients and
functions listed in appendix 3, we get the following rotational invar-
iants:
a00il 145 PASI 20>

Lt}

(87° /eis) -exp(-;;BAAZA) -FO(GZBPAZA)
(o1l aatpaliaody?t = ~(167 8§, /035) +exp(~g20A0R) SNCMITY
(aotllangratiinod? = ~(1672p/6% 5)+exp(~55o A3) o F, (62 PA})
Caotll aateatinoD® = (32¢* (g% -o®) g /%ug) exp(-gL,h05) ° Ty (63,243)
Ceonllaafpafil 0Dt = (32,5 /0,,) -exp(-Foghtip) ¥, (85,P4Y)
Cao1llaaiadlinot)? = (3202 (82-a® )£,0/8%) exp(5hg g ) - Py (6o PAZ)
<notllangeagliaoid? = (8YFORE%, /507, ) -exp(-5agihh) -Fo(05sPA3)
{no1llaalpadiiao? = (32307 ap/56€%, 5) exp(=55544%) SACMIVY

The fifth invariant is the one needed in the example (23.41).

n

n

(23.44)

I}

i}
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Appendix 1: Projection operators

In eq., (5.1) we have expressed the s.-a. LCAOs by the general SALC
coefficients (5.2). This representation is more expedient than that by
projection operators. But, of course, it is possible to interrelate
the s.~a., functions generated by both methods,

The projection operators or more generally the shift operators of

an irreducible representation c are defined by
P, = (dimc/orde)z_—gngk(gi'-u(g) (A1.1)
ge

If we apply such an operator to the atomic function IAj@aapa> defined
by (4.3), the resultant transforms according to the representation c,
component i, The indices k, J, and p, are redundant; but an unfortu-
nate choice of them can yield zero, although a s,~a, function of spe-
cies ¢ does exist., Since the orbitals lAjwaapa>'induce the product re-
presentation cAXa according to (5.,3), the decomposition of the repre-
gentation obeys the character rule resulting from (2.10):

n(Aa,c) = (i/ordG)%/Z(C),z'c(Cfi'a(C)o‘A(C) (41.2)

If now n(Aa,c)> 1, there are saveral independent sets of species c,
which may be found by trying several combinations of the indices k, J,
and p,. On the contrary,the indices €, e, and y in (5.1) exactly ex-
haust the set of species ¢ induced by tAjwaapa>.

We calculate the result of the projection. Because of (5.3) we get

Pfk(Ajwaamg> = (dimc/ordG)ggg gignfk(gfiﬁamgg)oﬁj(g)|Ai¢aan;> (A1.3)

If we apply Pik to the molecular orbitals (5.1), we derive the fol-

lowing interrelation:
(A1.4)

l(Aee,waa)yci> = Pikl(Aee,waa)ycﬁ> = %;K(yck,Ajee,ara)PiklAiwaar;>
a
This shows that the s,-a, MOs determined by (5.1) may be regarded as

linear combinations of the projected orbitals (Ai.3), where the sum is
taken for the redundant indices j and r . The index k is arbitrary,
but has to be the same in the SALC coefficient and the projector.

The orthogonality relations of the SALC coefficients resulting from
(2.26/27) and (3.6/7) allow the inversion of (A1.4), Starting from
Piml(Aee,¢aa)yck> = 6(m,k)~lAee,¢aa)ycl> one derives:

PimlAjmaasa> = EEEK(ycm,Ajee,asa)-I(Aee,waa)yci> (A1,5)

This completes the wanted interrelations.
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Appendix 2: Molecular integrals of Gaussian functions
In favor of the general validity,no reference was made to special

orbital systems in section 13. Only the choice of the distance vectors
between the atomic centres has regard for the integrals of Gaussian or
related orbitals. This appendix has two aims: At first the theorems,
i,e, their rotational invariants,are illustrated for a particulaf sys-
tem of orbitals; and secondly the proofs of the strong theorems con-
cerning the three- and four-centre integrals are supplemented using
this special system of orbitals.

As well known,the GTOs are recommended by their simple integrals.
We therefore choose the radial functions in (13%.1) from this type. As
explained in section 13,only spherical orbitals have the édequate ten~
sorial structure. Such orbital systems have been discussed in [45-47].
The most suitable for our purpose is that of [46],and we routinely re-
fer to this paper. The advantage of this system results from its gene-
ration by the gradient operator:

{Z|onlmy = G lm(V)exp(-azrz) (42.1)

The right transformation property is achieved by inserting the opera-
tor into the solid harmonics g?‘lm(g)=(ia)lYlm(g7a). As a function of
operators we distinguish éém( ) from <§‘sol 1m> in order to avoid con=-
fusion.

Emphasizing the general validity of the theorems,we sketch the Té-
lations of this system to other orbital systems. As shown in [46],the
definition (A2.1) leads to the following radial functions:

N, (1) plHi/2

n (a1?)sexp(-afr?)

Therefore the ordinary spherical GTOs as well as the spherical oscil-
lator functions can be expanded as

(ar)®exp(-a®r?) (F|sol 1m) = Nz(nl)-é(n+lllfli{/2)(-i)k<x"’fak1m> (A2.2)

{(F|osc anim) = N;(nl)-é(n+rllfli{/2)2k<i"ak1m> ’ (42.3)
where N, (nl) are normalizatio£ constants., For other systems of orbi=-
tals, <%1an@> = Rgl(r)<?,sol lé}, result infinite series expansions
with respect to the radial quantum number. The expansion coefficients
can be calculated, because the polynoms

N4(nl)-Li+i/2(a2rZ)<§ol lm’iﬁ)» (A2.4)

supplement the system (A2.1) to a biorthonormal system. Thence the -
coefficients of the expansion

.

@ sy = Pl Ffmnid (42.5)

are given by:



123

of = Ny(u1) I.k*‘i/z(aer)Rn (r)r?*2ar (42.6)

T_he multi-centre integrals contain products of the functions
(A2,1) with respect to different centres, These products can be reor-

ganized by a theorem given in [46], eq.(3.3):
-2n -1 2n 1

U v h, (‘v')-oz2 8%, A
| I ISR 2L][ . ] ( (42.7)

~2N.,=
el 3/-\3% (Vs '912 a, h m(V4
where v3j’ -V2, V =(a? ?mzv )/845s 9yp=tan” (“1/“2)’ Va1+a22, and
§12““1“2/912’ The sums in (A2,7) are limited by 2n3+13+2n4+14_2n +1,
+2n2+12. As for the coefficients of -this expansion we again refer to
{45, 46]}, and to appendix 3,
The application of the operator %_m(V) to a scalar function f(r)

1ts i
e HyDe(x) = g (x)Flso1 1, (a2.8)

where the scalar functions are given by gl(r)—V174n~(-:':-ad—)1 f(r). Be-
cause of (A2, 7), we need the corresponding theorem with respect to the
scalar functions of two vector variables ?1 and ? . This is given by
»

ICAT A m(vz)f(ri'rz'?i'?z)
1 (42,9)
T30 2 1,143,517 )

E;g/ljl i,rz,?i-?g)v 2L+ (mimZM)61'?21801(1122)LM>"

where the sums are limited by 11+12 £1,+1, and 11"'12"21-'22: even, An
infinite expansion of this type is trivial from the tensorial point of
view, The limitation of the sums is the essential statement of (42,9).
The proof is given by a recursive calculation of the scalar func-
tions g% /%z (A2,9) is obviously valid, if 11-12—0. The first function
then is g g O-f, If now (A2.9) and the limitation hold for a pair of
angular momenta 11 and 12, we deduce the same for the pair 11+1 and 12.
For this purpose,we start from ?11+1m1(7 )%_ (Vz)f(...) and decompose

the first spherical harmonic by:
1
1+

A s1my (7)) = (21,+3)WF/3(T+0) z(m 5 m, )% (v )%p(v
In order to perform the operation %MV):V 374nvp, we def:.ne the fol-
lowing derivatives:
1,1 _ 9 11,
gﬁiizfﬁ(xi'x?%) = Ekgziijg(xi’x?x3)
This yields:

1
%p(z)gﬁig'(r;,r;,;i.;’z) -
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= 218 (g r,F B @ oot 1) ¢ GG, ) Eleot 1)
and ' + '
=g #-171 21 '

%u(vi)@’iisol Ay = (24,438,775 ( W ug(f;'sol 1-1dp
If we now insert these expressions into ?11+1m1(v1);12m9?2)f(“‘)’ we

get a new equation of type (42.9) with 1,+1 instead of 1,, The compar-
ison of the coefficients of the functions <¥1,?zlsol(1f22)m> then
yields the recursive formula of the scalar functions:
1,1, I J 343
Jle+11; _ - V——T(-——‘j {1 2 }. { b 2} 3
€50, = ~(By#aVARSTI R (20205747 4y [% PRy S Ty
. !
S0 Tlaly A1ty
(25 5,4 *

T 3339 ' 4,41~}
+(_1)J+L+1%{ 2211L2} Gl 29%132:3 R
L1, ‘

. 1, . o
Since gzijz #0 only, if /11+32< 1,+1,,and <31||1||21>9‘0 only, if 31521+1,

g%i”jéz'(211+1)§(31s121'1)) (42.10)

we have the limitation ji+j2411+1+j2611+12+1. As for the second sum-
mand, we conclude in the same way ji+12511+12, j2422+1 and therefore
Jy+3p €34+ 4y+1 €1 41,41, From both limits follows that ngﬂ;*ﬂ’;éo
only, if ji+jzsli+12+1, which had to be shown. The recuréign with re-
spect to 12 is found by a fitting exchange of indices. In the long run
it is, of course, desirable to derive an explicit formula of the func-
tions g.

The analogue of (A2.9) involving three vector variables ?1,
2, is given by:
%imivi)ﬁzmgz)ﬁ3m§'?3)f(ri'rzz'rz3'?1‘?2'?2'?3'%'53)

"4 J% hglql'z gm'aj(ri'rzz'rzs'?i‘?z'?z'%'%'%) (a2.11)
i

-
r

29 and

Jiag Jiz
1,117 1 1,.4%
1-2 3 s 4 .
( 1 )(M m3u)<?1!?2’:?3'501(3132)J33’Zu>
The essential limitation of the sums is now j1+jz+j3<11+12+13. The
scalar functions h again can be calculated recursively,

We now are prepared to discuss the particular integrals. As an ex-
ample of the two=-centre integrals (13.3), we choose theose involving the
momentum operator, For this case,in [46]; the integral formula (4.5)
has been derived, which reads:

Q\analama]VuIBBnblbmo (A2.12)

_ o 1M 1AM 1,y =
= E ,{aﬁ(nanb,Llalbl,AB)(mzm WG m‘g)(EaQABIsol wd ,
where Ea has been defined above and Zgﬁ(...) is given by eq.(4.6) of
f46]1. From this follows the generalized reduced matrix element., Be-

cause of the symmetric coupling used in (13,3),a 6j symbol is involved:
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. 1+1 +1b 1 1 : )
<na1a||AB?V"“blb>J=VEZJ”)/‘“I.¥";D : '{1ag jb}.scaxﬁ.;”:ﬁ(nanb’Jlalblz‘gzin

An example of the weak theorem of the three-centre integrals (13.8)
is given by eq.(5.7) of [46]. The rotational invariants now are:

QmalallABJch||Bnb1b>1-=,(4n/(2L+1))§‘;Begﬁngﬁ(nanb,Llalb,Jj,AB.PC) (42.14)

According to {461, eq.(5.8), they depend on the distances AB and PC
only. From the same equation follows the limitation of the sums in
(13.8) by J+j €2n_ +1_+2n,+1,., Therefore J+j may be greater than 1,+1y.

In order to prove the strong theorem we,start from an integral over
two ns~orbitals, which is an invariant by itself:

-1 o} I, (AB.BE
am 00| T |BBn, 00> = §naB(nanb,000,JJ,AB,PC)(aBAB-PC) PJ(E:P_C)’(Az.is)
where PJ is a Legendre polynomial, In -accordance to (A2.1), the higher
functions are generated by ,anlm) = a"l lm(v)'an0(> and we can repre-
sent the shifted orbitals by |Aan,l.m =(-x)"'2f4 mgvA),AanaOO>.
Since the gradient now operates on the parameters 8'7&’, we can inter-
change it with the integration and generate the higher integrals from
(A2.15) by:
-1
@malama‘rc ,Bﬁnblbmb> (A2.16)
-1 =1 & > -1
= (=a)™"a(-pg)~"b (V) (V) Qon_ 60}z, | BN, O
%amaA%.bmbB< a'C' b(>
_ -la. "lb. rd -1
= B %_amévAC)%_bml()—V;C)Qanaoolrc lBsnbOQ

If we regard the integral <Aana00|r61lBBnb00> as a function of AG and
BC (which is possible), the theorem (A2,9) immediately supplies the
intended result (13.9). But because of the more natural interpretation
as a function of AB and ﬁ,we reshape the derivations by (A2.7). This
yields: ‘ +. + 4+
-1 - ‘ 171,54y 3707

Qan 1l m |ryT|Ben,lom > = nZaNgtanJLu%Bll OlaOIbL](mZmEM‘)(m )

.g=2n~] ~2N=J . > Al AN -1

Erp 90 Hon(Vip) P (Voo Aphng diam, 005" |Ben, 00>
with 1_+1,=2n+]J+2N+J3 J+J, Because the terms AS AN (aan 00)rg?[Ben, 00>
are scalar functions, the theorem (A2.9) applies now with respect to
the vectors AB and P—C‘. This yields the following expression of the
rotational invariants of the strong theorem:

T jl
Gn 1 1 ABPCY By 1, Y (42.18)
- 2 . p=dg=d, nNjJ 2 2 E.5R
= (1/4n(21+1) );n NJ_[n;.NJLﬂcpaBII 01,01,1] £ 265ap ggaanvj:(AB ,PC?, AB+PC)
The scalar functions ggNgJJlj/ have to be calculated recursively by (A2.

b
nNo8 °_,-2n_-2Nsn
gnanboo”faﬁ eaﬁ AAJ3

(42.17)

10) beginning with #5005} [BEn,00> . From the
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limit j+J» J+j according to (42,9) follows 1 +1,3 J4j' as proposed,

Since the expamsions (A2,2~4) affect the radial quantum numbers only,
the rotational'invariants of the integrals of other orbital systems
hawe the same group theoretical structure, '

| L _ Ng Nh /o . | ‘ L
{xn_ 1 IAB PCY||BXn, 1 > = n:n’ ®noCn: {1, 1487 PCYN) By 1, >,
a’

and the strong theorem is valid -for any system of atomic orbitals,

We finally come to the four-centre integréls of the electronic in-
teraction. First we discuss the weak version of (13.13). In order to
separate the functions (13.12)7we have chosen the coupling different
from that in eq,(6,4) of [46]. Because of the necessary recoupling,the
rotational invariants of (13.13) read:

)72Q2 )l (Bry 1, Dny1 ) 1117 (4m) (2142) (2041)

{(an 17,00 1 )1l(ac?BD?

. s i A
-Zp;v‘z] #+0%(n nyn ng,11,1 11,1, 350, jijZ,AC,BD,PQ)fgfr ;g%-gjs{f cllf Ij}
q
with 9=[(a2+yz)(BZ+52)/(a2+62+72+52)]i/2. (A2.19)

The invariants are functions of the distances AC, BD, and PQ only
and not of the angles between them,

The proof of the strong theorem follows the lines of ‘that given for
the three~centre integrals. and we can be brief, As in (A2.16),one gen-
erates the integrals by the gradient operators with respect to the
atomic centres: ’

-1 -1 -1 -1 -1
é“nalama'BBnblbmb,riz,CYnclcmc’Déndldmd>=('“) a(=p) " b(~y)"c(~5)""d
> = - -1

. %am;v A)%bm‘g V) %cmg’c) %dm((i V) hom 00, Bn, 00|75 | cmcoo,bandoo>

By repeated application of (A2.7),the differential operators are adapi-

ed to the distances AC, BD, and PQ. This leads to the scalar functions

£(AC? ,BD? ,PQ? , KC- BB, 5B. 53, P4+ £C) = gaf(n Bgn ~2N=ZN=J =Tk

! NN+ (T+I-K) /2 -1
'AXCAEDAPS *‘ +J-K)/ Q\.anaOO,BBnbOOIriz,CyncOO,Dénd00>

with G=E;Y and T=;bé. Because of (A2.11) the derivatives of these func-
tions have the structure

%m(VAC)%’{n’(V]:D)%m(V;Q)f .
t : L +
= ghﬁgjgkﬁj(mz,--.,136’-K€)-(3,35)(fm?w)@,iﬁ,ﬁlsol(jijz)r%mé
JiI i 142 3
with the limitation ji+jz+j3-éj+jQK. In analegy to (A2.18), this
leads to the rotational invariants of the strong theorem (13.13). Us=
ing the abbreviation F = 1/Y(4m)(21+1)(21+1)(2L+1)(2K+1),the result

reads: .
[(an_1¥,0n 1 )20(acH BDI2) TR0 I (Bny2 Y, Doyl )2T" = (42.20)
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% E‘mf %[naNJl"cpa7H01 01,1]- [nJJNIJlllcpﬁ5||01b01 Ry |

19/ 3
- [nes (3 +35K) /2, KOOKIICPGTHNJN’IK]{;] J 1} €2 556%¢ (42.20)
nggkﬁj(Ac ,BD? ,PQ? , L858, B8 83, B+ A)
142
The balance of the a.ngular momenta follows from 1 +1 =2n+j+2N+J # j+J,
1b+1d 2n+;j+2NJ+JJ> :)+J, and J+J'>K. This results in 1 +1.b+1 +1d 3+3+J+J
> j+34k > 31"'32"'33' which had to be shown.



128

Appendix 3: Modified Moshinsky-Smirnov coefficients and Gauss-Laguerre
type functions

In this appendix,we compile the coefficients involved in the egs.
(13.10/11), (23.21 and 43), (A2.7, 17/18 and 20) as far as they are
neeeded in section 23, The coefficients are related to the Moshinsky-~
Smirnov coefficients by a different normalization:

[hilitnzlth"¢“n313tn414tL] ‘ (43.1)

= (2L+1) ~A(nili)A(n212)A(n313)—iA(n414)-i<nili,n212L||q>ﬂ'n313,n414,L>/
where

A(nl) = Vax/(2n+2T+X) 11 (2n) 1! _ (A3.2)

The Moshinsky-Smirnov coefficients have been calculated by the formulae
(11) and (23) in a paper of Trlifaj [72]. In addition to the references
given in [45], we mention the papers of DobeS [73] and Niukkanen [74].

The coefficients are arranged according to the sum K=2ni+11+2n2+12=2n3

+13+2n4+14 and to the angular momentum guantum number L.

Table 29, The modified Moshinsky-Smirnov coefficients
KL | n,1ym,l,| nglsm,l, [nili,n212,L||(p[|n313,n414,L]
00 000 000 1
11 3cos9
~3sing

3sing

3cosQ

cos®o

20
sinZQ
-\ 3sing+cosy
sin®g
cos® o
V3singecosg
V3sing+cosg
-\ 3singecos9
cog®p-sin’g
3
Scoszw
5sin®o
-y 30sing«cosg
5sin®o
500s2¢
Y 30sing-cosg
Y 30sing-cosg
~y¥30singe+cosy

21
22

oo oo oo o ololoooo ook rloooo|o
e e OO O RN NIk 0 00 00 Ol O
O O OO0 00O O|O|O O O OO0 Ol oo o
DD OO O 0O OO0 OO0 Ol OO
O 0 0000 o0 oo|lojoo o0 O OORIOO O OO
O N F ONFON|R|[FOOR OO RO OO R O R
O 0O OO OO O O[O0 = O O O O F OlO O O O
N O F N O FNDO|RIe OO0 RO OROO|R O R O
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Table 29, (continued)
g I | nylin,lyl nglan,l, [hili,n212,Lﬂ¢"n313,n414,L]

101 5(cos® p=sin®g)
3cos’ 9

3gingpscos®o

3sin®pe+cosy

2 2
31

[y
(@]

~3sin’o
~-3{Zsin® g+cosg
3\ 2sing-cos’e
3sin’g
3sin® g-cosy
3singecos’y
3cos’ ¢
3y 2sin’ ¢+ cosy
3{2singecos®y
cos™g
sin2¢-0032¢

sin4¢
-V 3sing+cos’o
V3sin’p+cosg
VSsinfpecos®e
~{30sin’ g+ cosp
{30sing-cos’ o
V30sin’g+cosy

For the calculations in section 23, we further list the Gauss-

42

O I M N RN NO OO O O O ko ko ko ko H|O
 OlOo O O O O Ol o = = =+ OO0 OO0 O O
NN OO O O OO Ol i ko e OO0 OO O Ofke

O OO O H O H N|O O O O K O OO O H H|O
o e H O e e O O Ol O O RO O

o RO R O N R OlO O = O O O O k = O O

o e o e e O O O e e O O N O RO

O O MNIO O O O O O]J]O O O O O O o o o o o o]

o
[y
[y
o
[y

Laguerre type functions occurring in the egs.(23%,21 and 43):
(_2)1-11;‘1(“2 r2 )
(~2)*+exp(~o®r?)

¢0(a"11’r)

¢0(a’ 01,r)

]

9°(a, 11,r) = (—2)l+i(21+3-2a2r2)-exp(—azrz)
9%(a,21,7) = (-2)1*2[(2143) (2145)-4(2145) @ r? +4a?r?] sexp(=a??)
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Appendix 4., Isoscalar factors and s.-a. solid harmonics of the group ‘1‘d
In the following,the indices g (gerade) and u (ungerade) mark the
even or odd parity of the irreducible representations of the group S0(3).

Table 30. SO(3) compatibility table for the group T

d.
30(3) | 0, 0y 1, 1, 2, 2,
Td l Ai A2 Ti T2 E+T2 E+Ti

Jkl1

Table 31, The isoscalar factors Is(abc

) with j+k+1<4,

i k 1 a b ¢ Is j k 1 a b ¢ Is

Og Og Og Ai Ai Ai 1 2g 2g Og E E Ai V§75

Ou Ou Og A2 A2 Ai 1 2g Qg Og T2 T2 A1 V575
2u 2u Og E E Ai V275

1g1g 0g | Ty Ty A4y 1 20 % 0| Ty T, Ay | VETS

1 1 0 |T, T, A 1 &

u-u gl 2271 2g 2u Ol B E Ay V2/5

1 1 0. |T, T, A 1 ‘

g u ul| 172 "2 2g 2, 0y To Ty A V375

ig ig ig Ti Ti Ti 1

iu iu ig T2 T2 Ti 1

ig ig 2g Ti Ti E V275

1 1 2 T, T, T V375

g g ‘g|"17172

iu iu 2g T2 T2 E V275

iu iu 2g T2 T2 T2 V375

ig iu 2u Ti T2 E V275

ig iu 2u Ti T2 Ti V375

Table 32, The s.~a. solid harmonics of the group Td

l a p <§Wsol 1a§>
0 A1 INEn
1 7,x iV3/dmex
1 T,y iV3/dn-y
1 T, 2 V372
2 E 1 |-y5/16%(32%~-r?)
2 E 2 | YI5/16m(x*-y*)
2 T, % =Vi5/4n-yz
2 T, ¥ -Y1574w-zx
2 T,z =Y1574n+xy
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List of standing abbreviations

A0
BRM
CFP
CI
dim...
GEO
GTO
Is
LCAO
MO
NSR
ord...
Pis
PRM
QRM
QSALC

S.,=a.
SALC
SR
STO
TRM
TSALC

Z(eue)

atomic orbital

bicentric reduced matriz element
coefficient of fractional parentage
configuration interaction

dimension of ...

geometrical factor

Gauss type orbital

isoscalar (factor)

linear combination of atomic orbitals
molecular orbital

non-simply reducible

order of ...

polyhedral isoscalar (factor)
polyhedral reduced matrix element
guadrocentric reduced matrix element
guadrocentric SALC

reduced matrix element
symmetry-adapted

symmetry-adapted linear combination
sjmply reducible

Slater type orbital

tricentric reduced matrix element
tricentric SALC

valence bond ‘
Wigner-Eckart theorem

number of ,..
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back-coupling rule, 11(2.44)
bicentric matrices, 22-25
generalized, 24 (4.12)
product of, 31 (6.15)
bicentric reduced matrix element
(BRM),22-25 (4.4 and 10)
generalized, 24 54.13;
of a product, 31(6.16
of atomic orbitals,62(15.7)
of floating orbitals,69(17.9)

Biedenharn~Elliott sum rule,11(2.45)
bra-ket notation, 8
branching rule,7 (2.11 and 12), 97

chains of groups, 13%-15
characters, 7-8
Clebsch-Gordan coefficients,10
coefficients of fractional
parentage,78(19.20),79(19.26)
polyhedral, 84(20.18)
commitation relations, 76(19.8-10),
78(19.17), 81(20.2}
conjugation,
of representations, 6
of bases, 8
of 3jm symbols, 9(2.28)

of 93 symbols, 12(2.51)

of isoscalar factors, 14(2.76)

of operators, 13(2.60)

of polyhedral isoscalars, 30(6.8)
contragredient basis, 8
coset decomposition of space

groups, B86-87
creation operators, 75,81

decomposition, 7
density,
symmetry~adapted, 39-40
matrix, 76,79-80
de Shalit, rule of, 12(2.54)
double tensor, 16(2.87 and 88)

Einstein convention, 8-9(2.20)

equivalent sets, 17-21, 3233,
41,82

expansion theorem, 19(3.16 and 17)
33(7.11 and 12), 41(10.5 and 16}
of symmetry-adapted harmonics,.
8-9(2,20)

factorization,
of bicentric matrices, 22(4.4 ),
24(4.13)
of matrix elements, see
Wigner~Eckart theorem
of quadrocentric matrix elements,
43(11.3)
of tricentric matrix elements,

© 36(8.1)

floating orbitals, 68 (17.2)

Gaussian functions, 122,129
geometrical factor,
general, 3-4
of Griffith, 79(19.23)
gﬂgi ,27(5.7),112(23.8),113
EDy ,83(20.13)
GEO, ,38(8,17)
GEOz ,46(11.20)
GEOy ,62 15.8)
GEOS ,63(15.15)
eedg ,117(23.27)
GEOg ,63(15.17
GEO7 ,64(15.21
GEOg ,64215.23
GEOq ,85(20,22
GE010,85(20.24

Hiickel parameter, generalized,73

induced representation,
by edges, 17(3.3)
by triangles,32(7.1)
by pseudo-tetrahedra,41
by higher polyhedra, 82
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integral theorems,52(13.3),
53 (13.8/9), 56 (13.13)

integrals
two-centre,52~53,59
three~centre,53~56,59~60
four~c¢entre,56-57,60
of Gaussian functions,116~117,120,
122~-127,

invariants

orthogonality relatioms,
of polyhedral isoscalar factors,

first kind, 30 (6.9 and 10)
second kind, 35 (7.23% and 24;
third kind, 42 (10.16 and 17

of SALC coefficients, 18 (3.6/7)

of symmetry--—adaption coeffi-
cients, 14 (2.70 and 71)

of standard functions, 48 (12.3/6)

of topological matrices, 29 (6.2
and 3), 34(7.13 and 14), 41(io.
7 and 8), 42(10.11 and 12)
overlap matrix, 71

bicentric, 23,24
molecular, 3,27
point group, 59-60
polycentric, 61-~64,83
rotational, 52-56,72
isoscalar factors, 14
of the group chain TdC G,130
: point group invariants, 59-60
polyhedral CFP, 84 (20.18)
polyhedral isoscalar factor,
of the first kind, 26, 30(6.5/6)
of the second kind, 35(7.21/22;
of the third kind, 42(10.14/15
generalized, 83 (20.12)
polyhedral reduced matrix element
(PrM), 83 (20.8)
product groups, 15
product of bicentric matrices,
31 (6.15)
projection operators, 121
pseudo-~tetrahedra, 41-42

J=symbols
3Jjm symbol,9
4jm symbol,34(7.15)
6j symbols,10
9) symbols,1ii

kanonical molecular orbitals,
71(18.2)

Ldwdin orbitals,73(18.13) quadrocentric reduced matrix
element (QRM),43(11.3)
quadrocentric SALC coefficients,41
» quasi-ambivalence, 8(2.19)
Moshinsky-Smirnov and related
coefficients, 54,123,128
Mulliken approximation, 66 Racah's back-coupling rule,11(2.44)
Racah's factorization lemma,14(2.73)
generalized,30(6.5)
reduced many-particle matrix element,
in the MO scheme,79(19.22) and
(19.27)
in the VB scheme,83(20.11 and 13)
reduced matrix element (RME),13,16
bicentric (BRM), 22(4.4),24(4.13)
polyhedral (PRM),83
quadrocentric (QRM), 43(11.3)
tricentric (TRM), 36(8.1)
of s,-a., molecular orbitals,26

non~simply reducible, 6
non~-symmorphic space -group, 90

occupation operators,75~85
orthogonality relations

of characters,7(2.8and 9)

of generalized topological matrices

82(20.,6) (5.5,6 and 8)

of geometrical factors GE01,27(5.9 of valence bond functions,85
and 10) . (20.23)

of irreducible representation representation

matrices, 6(2.4)

of isoscalar factors, 15(2.77/78)
of 3jm symbols, 9 (2.26 and 29)
of 6j symbols, ii§2.43§

of 9j symbols, 12(2.55

induced 17,32,41,82

in Hilbert space, 6(2.6),82(21.2)
irreducible, 6

of space groups, 86-88

rotational invariants, 52-57
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SALC coefficients,18-21,26(5.2),
of the tetrahedral group T4,
96~102

scalar functions of group Td,94

simple phase groups, 8(2.16)

simply reducible groups,iO

solid harmonies,52(13.4
coupled,53 (13.7),56(1%.12)
of group 74,130

spherical harmonics,ZOEB.isg
symmetry-~adapted,20(3.19

space groups,86-92

spinor representation,8

standard functions,47-49
of group T74,93-96

structural matrix,72

symmetry, |
of 3jm symbols, 9~10
of 6j symbols,10
of 9j symbols,12
of isoscalar factors,14
of polyhedral isoscalar factors,
30(6.8§

symmetry-adapted (s~a),
geminals, 39-40
densities,39-40
function,22(4.1 and 2)
harmonics,20(3.19)
linear combination (SALC),
18(3.9)
LCAO-M0,26 (5.1 and 2)
tight~-binding functions 88-9i,

symmztry- adaption coefficients,
14,29

gymmetry coordinates, 5, 101

symmorphic space groups, 88-~90

tensor operator,13
tetrabedra,see pseudo-tetrahedra
tetrahedral group Td, 93-120
tetrahedral structures, 93-111
theorem,
of expansion,19(3.16 andi7),
33(7.11 and 12),41{10.5 and 6)
of factorization,22(4.4),36
(8.1),43(11.3)
of Frobenius and Schur,7(2.15)
of Kopsky, 47-49
of Maschke, 18
of standard functions, 48
of Wigner and Eckart (WET),13
(2.59%, 52(13.3),58
tight-binding functions 88(21.12),
91(21,23)
topological matrix,
of edges inkriangles,i7€3.1)
of triangles,33(7.7},34(7.16)
of general polyhedra,82(20.5)
and (20.7)
of pseudo~tetrahedra,41(10.1),
42(10.9)
of group T™d, 103-109

topological operator, 72

triad,7

triangles 32-33

triangular invariants, 36-38

triangular representations,34-35

triangular SALC coefficients
(TSALC),32

tricentric reduced matrix element
(TRM), 36(8.1)

valence bond picture,81-85
vector representation,8

Wigner-Eckart theorem(WET),13
(2.59),52(13.3),58

Wigner-Racah algebra,6

Wigner-Seitz cell 88,90

wWolfsberg~Helmholtz approximation,
65



