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i. Introduction 

Philosophers of sclence have traditionally been fascinated by the 

regular polyhedra. Pythagoras and Plato assigned them to the primary 

elementsl Kepler speculated about them in ~Harmonices Mundi'! and more 

recently W.Heisenberg, fully aware of thistradition, offers us a mod- 

ern interpretation of Platols opinion. Summing up, he says: 

"Die letzte Wurzel der Erscheinungen ist also nicht die Materie, 

sondern das mathematische Gesetz, die Symmetrie, die mathematische 

Form." [i] 

(The ultimate root of the phenomena is not the matter but the mathe- 

matical law, thesymmetry, the mathematical form.) 

Because the intention of this treatise hardly can be explained bet- 

ter, we add another quotation, in which we certainly may read molecule 

as well as elementary particle: 

"'Fragt man bei Plato, welches der Inhalt seiner Formen sei, aus wel- 

chem Stoff also seine regul~ren K~rper schlieGllehgemaeht seien, so 

erh~It man die Antwort: aus Mathematik. Denn die Dreiecke, aus denen 

die regul~ren K~rper gebildet werden sollen, sind ja nicht selbst Ma- 

terie, da sie als zweidimensionale Gebilde keinen Raum erfGllen. Sie 

sind gedankliche Konstruktionen, die durch die Art ihrer Zusammenf~gung 

r~umliche Gebilde darstellen. In ~hnlicher Weise sind in der heutigen 

Physik die Eigenwerte, die die Elementarteilchen darstellen, eben Ei- 

genwerte einer Gleichung und in sofern rein mathematische Gebilde, de- 

non keine Substanz zugrunde liegt. In gewisser Weise k~nnte man viel- 

leicht noch die Energie als Substanz bezeichnen, aber auch die Energie 

und lhre Erhaltung ist elne mathematische Folge einer Invarianz-Eigen- 

schaft der Gleichung, sis ist gewisserma~en in der Gleichung enthalten. 

Letzten Endes wird also der Nateriebegriff in beiden F~llen auf Mathe- 

matik zurUckgeftthrt. Der innerste Kern alles Stofflichen ist fGr uns 

wie fGr Plato eine "Form", nicht irgend ein materieller Inhalt. "[2] 

(If one asks in Plato, what is the essence of his forms, i.e.which 

material his regular solids are made of, one gets the answer: of mathe- 

matics. For the triangles constituting the regular solids are no matter 

by themselves, because as two-dimensional entities they cover no space. 

They are constructions of thought, which constitute spatial formations 

by the mode of their composition. Similarly in modern physics the eigen- 

values representing the elementary particles are just eigenvalues of 

an equation and thus purely mathematical entities based on no substrate. 

In a sense one might specify the energy as a substrate, but even the 

energy and its conservation is a mathematical consequence of an in- 

variance of the equation, it is so to speak embodied in the equation. 

In the end in both cases, the concept of matter is reduced to mathemat- 



ics. For us, as for Plato, the very essence of reality is a question of 

"form", not of material substrate.) 

The present treatise is devoted to the elaboration of such princi- 

ples of form, with particular respect to molecular physics and quantum 

chemistry. These principles appear on two levels. The classical symme- 

tries of the polyhedra have been replaced in their importance by more 

fundamental symmetries, which are shared by all elementary particles, 

and consquently by all molecules. These symmetries, including the homo- 

geneity and the isotropy of space-time and the permutational symmetry 

according to Pauli~s principle, specify the possible forms of Schr~din- 

ger equations and of state functions. These symmetries will be presup- 

posed here, and will concern us only in the case of the multi-centre 

integral~ (section 13). For these integrals they prescribe general 

principles of form not restricted to symmetric molecules. 

The main subject of this treatise is the symmetry of the polyhedra 

realized in °°the architecture ofmolecules". Pauling?s book of this 

title C3~ may be regarded as a modern illustration of Plato, and of 

Kepler's statement, "geometria est archetypus pulchritudinis mundi". 

The triangles mentioned by Plato as the constituents of the polyhedra 

are essential to the present analysis, too. 

The analysis of symmetry means application of group theory. Except 

for the theory of transition-metal ions, this application in chemistry 

has been more or less qualitative: labeling of states and normal vibra- 

tions, splitting and selection rules. The construction of symmetry- 

adapted linear combinations (SALC),going beyond this point, has re- 

mained unsystematic, because the linear combination coefficients - in 

contrast to the Clebsch-Gerdan coefficients- have not been considered 

a basis of an algebra. 

Against the ,myth of qualitative group theory" ~4~, the Wigner- 

Eckart theorem in its several varieties yields qualitative results and 

makes the quantitative analysis of symmetry a theory of reduced matrix 

elements or, more generally speaking, a theory of invariants. In atom- 

ic spectroscopy, the reduced matrix elements are related to the radial 

integrals of the atomic orbitals, the Slater integrals for instance, 

and therefore have a lucid meaning. The same holds for the ligand field 

theory, which is focussed on the central transition-metal ion. But what 

is the concrete meaning of the reduced matrix elements in polycentric 

systems? 

As an answer to this question, we shall design a quantitative analy- 

sis Of symmetry for molecules, which can not Be treated as quasi-mono- 

atomic systems. Consequently, this must be a theory of molecular in- 

variants. Since the symmetric coordination polyhedra are a new tempo- 



nent in comparison to the traditional atomic spectroscopy, to the nu- 

clear shell and to the ligand field theory, this will exercise an in- 

fluence on the character of molecular invariants as well as on the al- 

gebra of coefficients. 

With regard to the invariants there are now two different types. 

At one hand there are still the reduced matrix elements of the Wigner- 

Eckart theorem. Because these arise from the s.-a. and thus delocalized 

molecular functions, they gain their significance only indirectly by 

as second type of invariants localized at the edges, triangles etc. of 

the polyhedral framework. These invariants involving several atomic 

centres quite naturally refer to the neighbourhoods within the co- 

ordination polyhedra (sections 4, 8, 11) and thus give way to the 

ideas of coordination chemistry and the theory of chemical binding. 

With respect to the theorems mediating the connections of both types 

of invariants~we need a polyhedral supplement of the tensor algebra. 

The familiar classes of coefficients in the Wigner-Racah algebra (3jm, 

6j, 9j symbols, isoscalars, coefficients of reduction and fractional 

parentage) are supplemented by classes with reference to the edges, 

triangles and deformed tetrahedra subtended by the atoms. The most 

significant, new coefficients represent triangular relations within 

the polyhedra. In analogy to the familiar isoscalarslthey are called 

polyhedral isoscalars. Principally the new definitons and the somewhat 

delicate design of the graphic symbols shall be kept as close as 

possible to the existing Wigner-Racah algebra. 

The question for molecular invariants can be formalized quite 

generally in a basic concept. An arbitrary statement of the ligand 

field theory may serve as an example, let us say the energy of the 

state 1A1g(t~g ) in an octahedral field: 

E(1Alg(t~g)) = E o - 8Dq + A + lOB + 50 
(1.1) 

On ~he left we have a physical quantity Ph(y) depending on a set of 

quantum numbers y. On the right there are several radial integrals 

Int(z) likewise depending on quantum numbers z. In (1.1) these are in- 

dicated by distinct letters. Seldom is it stressed that the factors -8, 

I, I0, and 5 are not more or less occasional numbers but values of 

functions of y and z and therefore can be enunciated by formulas con- 

taining the sets y and z. Factors of this type will be called geometri- 

cal factors through out, GEO(y,z) in this case. (1.1)now presents it- 

self as a special case of basic relations: 

Ph(y) = I GEO(y,z).Int(z) 
z CI.2) 



Another example is the square of a vibrational frequency of a molecule 

expressed by the force constants with respect toneighbouring atoms. 

This relation is determined by geometrical factors, too. 

Often - especially for symmetrical structures - the geometrical 

factors are the only accessible, precise data and therefore the most 

interesting part of the theory. In semi-empirical theories (like 

HGckel-MO), the integrals Int(z) are treated as parameters. For the 

fitting of these parameters, the inversion 

Int(z) = ~ GEO(y,z).Ph(y) (1.3) 
Y 

is useful. 

The task new is to design a systematic theory of the quantities 

Int(z) at one hand and the geometrical factors at the other, as has 

been elaborated for atoms and nuclei. 

The physical quantities naturally do not depend on the choice of 

coordinate axes and the numbering of atoms; they areinvariants. The 

generation of a minimum number of invariants Int(z) demands the con- 

sideration of symmetry. Since (1.2) is a relation between invariants 

of different type, there can occur nested relations of this kind. An 

example is a many-particle matrix element, which, in a first step,is 

expressed by the one-particle MO-integrals (respectively their invar- 

iants). In a second step, the latter are expressed by the multi-centre 

integrals of the atomic functions (respectively their invariants). 

The geometrical factors, being invariants too, have to be reduced 

to the coefficients of the Wigner-Racah algebra of the relevant point 

group and its polycentric supplement. The generalization of the 

Wigner-Racah algebra to point groups has been given by Griffith C~ 

with restriction to simply reducible groups containing ambivalent 

classes. Even more recent books in this field cling to this restric- 

tion C6, 7, 81 • An exception is the introduction to the energy dia- 

grams published by K~nig and Kremer EO~ and preceeding papers by the 

same authors. Since our results shall equally and immediately apply 

to systems like Co(NO2)~-(grou p Th) , Ta6-clusters with spin-orbit 

coupling (group 0~), Pt(CN)~-in an magnetic field (group C4h), and 

BI2H~ (icosahedral group), we include the non-simply-reducible point 

groups with non-ambivalent classes from the beginning. 

Because of the heterogeneous notations in the literature, we 

recapitulate the Wigner-Racah algebra of non-simply-reducible point 

groups with non-ambivalent classes in section 2. The price for in- 

cluding these groups is the appearence of several multiplicity in- 

dices, which may obscure the esthetic clarity of the theorems. 

Therefore it is advisable to emit all multiplicity indices and their 



related sums from time to time. Mostly these indices take only one 

value and are included only as a precaution for the few cases of 

multiplicity 2 or 3. After this recapitulation, the principal concepts 

refering to point group symmetry only are built up in the sections 3 

to 11. In doing so, the preliminary studies [10, 11] are resumed. The 

rest of this treatise is new matter. The sections from 12 onwards 

contain more detailed results, which depend more on special choices 

concerning multiplicities and orbital systems. 

Since many-electron matrix elements are reduced to one- or two- 

electron matrix elements by geometric relations, we are mainly con- 

cerned with the latter. Because of the delocalization of the MOs, the 

manyelectron systems in the MO scheme show no p olycentric peculiarities 

compared to ligand field theory. So they are dealt with only in short 

in section 19. On the contrary, the VB scheme, though less usual, 

leads to some general ideas in our context (section 20). The main sub- 

ject of the further development presumably is the theory of the po- 

lycentric coefficients of fractional parentage (the generalization of 

the familiar coefficients). For this purpose, one needs the unitary 

group or quasi-spin approach adopted by Racah for the many-particle 

theory. 

Another direction of improvement is sketched in section 21. It is 

the application of the present symmetry-analysls on crystals, i.e. the 

introduction of space groups into our considerations. This application 

offers itself in particular for calculations using atomic er Wannier 

functions (for instance tight-bindlng or OPW methods) and for normal 

vibrations of crystals. In the case of symmorphic space-groups this 

introduction causes no difficulties#but for the non-symmorphic groups 

it is hampered by the deficient elaboration of the Wigner-Racah al- 

gebra of these groups. 

Another aspect, the application to the molecular normal vibrations, 

has been demonstrated in the paper [I~ . Since no principal new con- 

cepts could be expected to appear, it has not been taken up again 

here. The same applies to the more complicated adiabatic and rela- 

tivistic effects. 

In the foreword of his book ~ , Chesnut has termed group theory 

as organized common sense. Organizing in this context also means the 

tabulation or the programming of the group-theoretical coefficients, 

just as they now are available for the rotation group ~ and by a 

recent book ~ for the point groups. Not until the newly defined 

coefficients, especially the polyhedral isoscalars, are available nu- 

merically, the symmetry-analysis lined out here will take full effect. 



2. Summary of the Nigner-Racah algebra of non-simply-reducible 

point 6roups with non-ambivalent classes 

In the followin~we assume as known the results of the monocentric 

group theory of atoms and molecules presented~ let us say, in the books 

of Edmonds ~5] and Griffith B]. Some parts of the group theory con- 

cerning the two-particle interactions and coefficients of fractional 

parentage (CFP) and missing in GriffithTs book have been described in 

the papers [16, 17~ and this concise summary is in part identical with 

the appendix of [i7], where more references are given. A detailed study 

of the NSR groups has been made by Butler [18], but it is more ge- 

neral than necessary for point groups. We further refer to the lectures 

given by Butler and Piepho at the NATO Advanced Study Institute on re- 

cent advances in group theory [i9, 20]. 

2.1. Representations 

We consider a molecule, complex, or cluster with a symmetry group 

G, optionally a point group, a double point grouppor the direct pro- 

duct of a point group and the spin group SU(2). The classes of G are 

denoted by C and its elements by g, gtetc. The latter are identified 

with the symmetry operations in the configuration space acting on vec- 

tors, triangles and other objects in space, for instance: 

~= g-IF (2.1) 

The irreducible representations of G are denoted by a, b, c etc. (or 

a(G), b(G), ... if a distinction is necessary) with the unitary repre- 

sentation matrices Da(g), and the matrix elements Damn(g): 

a a i a 
Da(g)Da(g) = Da(g~) or ~Dmn(g)Dnp(g) = D~p(gg) (2.2) 

n 

Da(g)+= Da(g)-l= Da(g -I) or 

: f a(g)-11 n = (2.3) 

These obey the orthogonality relation: 

a D b ~ B-~" ab mp nq (2.4) g~D~n(g ) pq(g) = ordG 6 8 6 

The representation contragredient to a is denoted by a + and defined by 

Ca + ) a [D~n(g)] D~m(g-i)0 (2.5) Dmn (g) = = 

The reducible finite dimensional representations of G are denoted by 

aA(or aA(G)) with a discriminating index A and the representation by uni- 

tary operator~ acting on a Hilbert space I by U(g). The operators U(g) are 

defined in the space representation by 

<g-~l~ =~Iu(g)I~. (2°6) 



2.2. Characters 

The characters are defined as usual for irreducible and reducible re- 

presentations: 

a(g) a ~i , = ~Dmm(g) , oX(g) = i(g) (2.7) 
m 

From (2.4) follows the orthogonality relation 

ordO-i ordc. a(c (c) = 6ab , (2.8) 

where C are the classes of G and ordC their order, i.e. the number of 

elements in C. A further orthogonality relation is: 

ordG-~(o~a(c) = ordO-16C~ (2.9) 

The criterion a 

n(X,a) = ordG-{~ordc.~a(cf.oX(C) (2.10) 
gives the multiplicity in the decomposition, i.e.the direct sum 

c X = ~ n(X,a).a (2.11) 

The relation a 

ordG-i~ordC.~(C)~(o)zC(c)= n(abc) (2.12) 

likewise gives the multiplicity in the decompositions of the direct 

products: 

aXb = ~n(abc)c +, axc = ~n(abc)b + , and b~c = ~n(abc)a + (2.13) 
c a 

But n(abc) also determines the multiplicity of the identical represen- 

tation in the triple product a xb × c. If n(abc)~ i (abc) is called a 

triad. In order to discriminate triads from other triples of represen- 

tation~ one defines the symbo~ 

6(abc) = ~ {  i f  n(abc)~{ ( 2 . 1 4 )  
to i f  n ( a b c )  =0 

In the case of n(abc)~ 2~we need a multiplicity index in the decompo- 

sitions (2.13), • let us say, and shall call (abc~) a triad too. Be- 

cause of (2.8) we have for all groups and all irreducible representa- 

tions a: n(aa+~) = I. 

Concerning the equivalence of a representation a to a + or to a real 

representation artthere are three cases: 

a) a~a+~a r , b) a o&a + , c) a~a+~a r 
These cases are distinguished by the criterion: 

~--~ f { in case !I ) = in case 
- in case 

(2.15) 

In the cases a) and c)~the characters of the representations are real. 



In the tables of Koster e.a. [21]fthe cases are specified for each re- 

presentation. 

Finall~ all point groups are simple phase groups, which satisfy: 

g~e ~a(g3 )= g~a(g) 3 (2.16) 

This means that the identical representation may be contained only in 

the totally symmetric or the totally anti-symmetric part of the direct 

triple product ax a xa. The significance of this property will show up 

in section 2.4. 

2.3. Bases 

The bases carrying the representation a are denoted by am (and a dis- 

criminating multiplicity index ~ if necessary). If the basis is realized 

by Hilbert space vectors, we use Diracs bra-ket notation through out: 

In the case of finite-dimensiomal vector spaces, except the tree-dimen- 

sional configuration space, we use ~...am) in the same sense. 

The basis contragredient to ~a~is denoted by ~a+m>having the same 

transformation properties as the brae: 

<Ham>= <am~=+ <a+mlr-~ or (Flare) = (re~!tFe ~ (a+mlF) 
Since a and a may be inequivalent, we can not and a+m in 

general. Moreover~ such a relation is of marginal interest, because the 

final invariant expressions do not contain special bases anymore. But 

the basis a++m has the same transformational property as am and there- 

fore is proportional to the latter. A detailed consideration leads to 

a++m = {a~.am (2.18) 

with a phase faotor~a}= i for vector and~a}= -i for spinor represen- 

tations [22]. The use of braces for this phase factor is justified by 

the relations (2.31) and (2.39). The representations of case a) are all 

vector representations, those of case c) all spinor representations. 

The complex representations of case b)can belong tO either type. 

We have to take into account (2.18), if we relabel representations: 

am-~ b+m implies a+m-~ b++m = {b~bm 

and a+m-@ bm implies am -@ b+++m =~b~b+m 

For all point groups~ the following quasi-ambivalence condition [19] 

holds (cf.also eq.(12)of [20]): 

~a}~b;[c; = i if (abc) is a triad, i.e. n(abc).> i (2.19) 

Since there is a strict correspondence of co- and contragredient 

bases in all sums, we can adopt Einsteins convention: If the same in- 



dex occurs twice, as a co- and a contragredient index, the the sum is 

to be taken over the range of this index: 

.a + ..)(...a..) m~ .a +. .a. 
~ ( : : . m  : . . . . .  m . : .  = ( : : . m  . : : ) ( : : . m . : :  ) (2 .20)  

2.4. 3jm symbols 

The matrix 
~abc = r -I~ a D b D c lmn,pqr o dG D~p(g) mq(g ) nr(g ) (2.21) 

projects cut the identical representation from the direct triple pro- 

duct axb~ c. Because of the relation M2= M~the eigenvalues of N are 

zero and one. The number of the eigenvectors belonging to I is given 

by n(abc) according to (2.12). The components of these eigenvectors 

(numbered by the multiplicity index o) are the 3jm symbols of the group 

G: 
ordG-l~ (abc~o (2.22) p(g)D~q(g)D~r(g)'cabc~u 

~Imn ~ -pqr- 

For convenience the eigenvectors are chosen orthogonal: 

' 1 ~ "  " , = 8 ( ~ , ~ )  ( 2 . 2 3 )  

Since a m a t r i x  can be rep resen ted  i n  terms o f  i t s  e i genveo to rs  and 
- v a l u e s ,  ano the r  d e f i n i t i o n  o f  the  3Jm symbols i s  

rd -I D~- a D b D e ~fabc~o~(abe~o (2.24) 
o G ~ ~(g) m~ e (g) (g) = -pqr" ' g~ nr ~ ~ Iron j 

The basic transformational property of the 3jm symbols is 

D a D b D c ¢abc~o (abc~o 
I ip(g) mq(g) nr (g)~Imn ~ = "pqr" ' (2.25) 

from which other forms can be ~erived by (2.2). Because of the choice 

(2.23~ the orthogonality relations read: 

~-tabc~c~fabd~ ~ 6(c,d)6(o,~)8(n,p)/dimc (2.26) 
~lmn ~ ~lmp z = 

~cn ~. ,abc,o~,abc,u mlmCLlmn ) ~pqn ) = 8(l,p)8(n,q) (2.27) 

In [18] Butler shows, that (2.19) allows the choi~ of the following 

simple conjugation property: 

(abc~o~_ ta+b+c~o (2 .28)  
Imn' - ~i m n ~ 

Because of the simple phase condition (2.16) I all 3jm symbols can be 

arranged according to the following symmetry rules. They are symmetric 

with respect to cyclic permutations 

(abc~o fbca~c _ /cab~o (2.29) 
Imn ~ = ~mnl' - ~nlm" 

and need a phase factor ~abco~ = ±I for odd permutations: 



In the case of three different representations a, b, c,the choice of 
these phase factors is free. The factors faaaoj are fixed, the factos 
{aaccrf fixed in part. For SB groups they can be split up into phases 
associated to the individual representations (cf. eq. (7) of [20]) : 

bbcj = (-i)a*(-i)b*(-i)c 
The phase factors of (2.18) are special cases: 

From (2.28), (2,18) and (2.19) we get the derived conjugation pro- 

perty: 

If the triad contains the identical representation i, we have the 

special case: 

(,::)€ = 6(~.i)6(a,c*)b(k,l)fi~ (2.33) 

In terms of the 3jm symbols,the coupling of kets is given by 

((ab)ocp> = [~)~dirnd~(~+~+~)'* lam>* [b~$ (2.34) 

The Clebsch-Gordan coefficients in Butler's "sensible" choice ti81 
therefore are : 

(am, bnl( ab )~CP>~: 

But there may be introduced an 
<am,bnl (ab)acp> = 

arbitrary phase factor ~(abco): 

~(abco)-<am,bn\(ab)ac~>~, 

We therefore shall use only the explicit formula (2.34). 

2.5. 6j symbols 
The 6j symbols are the invariants defined by: 

aetf a dbf* 8 d'ec y a*bfcjb 
{:t:fapyb = z(il m) *(njm ) *(n lk) *(i j k (2.35) 

Their symmetries follow from (2.29/30) : 

and its combinations with (2.36). 

Because of (2.33) the 6j 
reduces to: 

f Ejiiyb 

symbol containing the identical representation 



This fcrmula justifies the choice of curly brackets for the phase 
factors in (2.30) and (2.18). 

The essential relation of the 6j symbols is; 

~abcl (2.40) L~il~fae+f)~m "~njmtdbf+~'fd+ec~y'(a+b+g~6" ~n lk ~ -i j p" = 6(c'g)6(k'p)dimc-I'[defJ~76 
This implies the definition (2.35) as a special case. 
From (2.40) further relations can be derived by the help of (2.26/27): 

~,ae+f~ fdbf+~.fd+ec~7 = v~abc~ tabc)6 
kil m J "~njm ~ ~n lk ~ ~Idef)~y6~ijk (2.41) 

and the recoupling equation: 

=~--d.m (abc? .abc, (2.42) ~'ilv(ae+f~'(dbf+)~m" -njm" 7~ c I C~def]~y6kijk )6.(d+ec~Y~~n lk' 

For the elimination of the complex conjugation on the right, one has to 
take into account (2.32). 

The relations containing several 6j symbols are as follows: 
Orthogonalit~: 

~dlmf{abC~def ~76" {abgJdef ~o~ = 6(c,g)6(7,~) 6(6,~)/dimc (2.43) 

Racah s back-coupling rule: 

~---dimg {e}e~g { dbf+O~ {abcS# { adg+o~ {d~)~u~ ~ b~ ~ '~" #adg+~bef J~O = ~ defJ~76~abc~ (2.44) 

Biedenharn-Elliett sum rule: 

~ala2a3Y~(ala2a3 ] /a3a2a I] 
Y Iblb2b3~Ig2a3~Ic3c2cl~3~2~Iy = ~'--~a~dimaa~y 

(c2b2a 7 (clbla ~ fc3b3a ] (2.45) 
. ~IcI~I ab2c2~ ~:ab3c 3y~ ~ ~ Z~ ~ Z~ + + + 

blcla3~ 3~3~b3b3a2~ O2~2Y~b2c2al I ~IaI ~7 

Special cases of these relations are the sum rules over one 6J symbol: 

v~edimc~l~yy = 6(~,~)6(ab÷f~) (2.46) 
I - 

y~c{abcy~dimc a~c~f ~YY = 6(f,1)6(~,l)6(~,l)~dima.dimb ~ (2.47) 

2.6. The 9j symbols 
We now collect the properties of the 9j symbols. They are defined 

by 

{i b cl ~e f ~ = ~(a b c ~d e f ~g h i ~y~a d g ~6(b e h }~(c f i ~ 
h i y ~'mambme" "mdmemf" "mgmhmi" "mamdmg" "mbmemh" "mcmfmi'(2.48) 

andareinvariant to even permutations of rcws and columns. The multi- 
plicity indices follow their triads in an obvious way: 
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iicl  °al e f ~ = f d ~ = i T etc. (2.49) 
hiy igy bc~ 

In the case of odd permutations of rows or columnsfagain#the phase 
factors appear: 

b~ ra ca 
e f~=~abc~ ~def~ghi?~ ~d f e ~= ~adgSJ ~behe~ ~cfi~ i y (2.50) 
h i)y ~g i h)y e 

The conjugation is related to the reflection about the main diagonal: 

g8 + + ÷ 
~d e f~ e e = = h e (2,51) 
(g%+i~J y h i~y f i 

As all nJ symbol s~the 9J symbols containing the identical representa- 

tion reduce to zero or a simpler symbol: 

[~ b I}~ ~a a+l ji 
e f ~ = 6(~,i)&(q,l)6(a+,b)&(f+,i) d e f+~ (2.52) 
h i y tg h £~? 

& e ~  8 e l  
w i th  the spec ia l  case: 

l a a+l ~I 

g+a~Sey~ d e f+ t  ~ = ( l /Vdima.d imf~{h~{a+hee~hf+gyJ~ d e f -  (2.53) 
hfJ? 

There is an analogue of eq.(2.40) for the 9j symbol, from which we 

can derive the analogues of (2.41 and 42). The latter is the useful 

rule of de-Shalit: 

~(d e f )~g h i ~y~a d g ~8(b e h ~e 
"mdmem f- . mgmhm i- . mamdmg- . mbmem h- 

~--dimc.1'a f~A . ,a  b c ,~(c f i 
(d b c ~ (2.54) 

= e J? tmambmc) ) ~ ~ el C$ h i I ~cm#i 

e 

The orthogonality relation of the 9j symbols reads: 

~--- ~d--dimc-dimf .Fa b c~ Fa b c ~* 

i jy {g'~, i_y' (2.55) 

= ~(~,h') ~(g,~') ~(~, #) ~(e, d) ~(y, ~)/di,,g.dim~ 
Instead of (2.48)# the 9j symbol can be defined in terms of 6J sym- 

: h (2.5~) 

Using the orthogonality relation of the 6j symbols# one derives from 

(2.56) the following sum rule: 



I .~ab e  d mo.I  f ~ ~f+i kI~ 
c~ {g ~ i 

IS 

= ~k~ ke f+Igs~'~ a+d 8o~T (2.57) 

2.7. Tensor operators 

By definition~a tensor operator is a set of operators having the 

transformation property: 

U(g)T~(g) + = ~D a " "T a pZ pq~g~ p (2.58) 

The matrix elements of these sets of operators can be factorized accor- 

ding to the Wigner-Eckart theorem (WEE): 

efPlT:ledr> = Z ~fllmalled>E "(f+a dE -p q r) (2.59) 
g 

From (2.30 and 32) follows the relation of the reduced matrix elements 

of T a and of their adjoint operators (Ta)+: 

<~d II( T a) + lhf>~ = ~f~ ~adf +~ ~ ~f liTall~d>~ (2.6O) 
In consequence of (2.34)! the coupling of two operators is given by 

Wm~C(ab) a+b+c ~ a. b = ~c~'~(k 1 m ) "Uk V1 (2.61) 

The reduced matrix elements of the set W can be expressed by those of 

its constituents: 

<Sdll¢C(ab)ll~e>~ 
a + 

= ~ {~ j .~ , ~ IV b Ee>~ (2.62) 

If the space of the kets is a direct product space~ and if the operators 

U a and V b act on either factor space only, the reduced matrix elements 

of w~C(ab) can be split up into the reduced matrix elements of U a and 

V b with respect to their factor spaces. Because of (2.34)! the states 

of Hl~' H 2 are 2, 

and the factorization is given by~ 

~(did2)6dllw~C(ab)ll(eie2)se>~ ~2 rd d d+~8 (2.64) 

= ~dimd'dimc'dlme'~-~ a*b~c I~'<d~llualle~>~" ~2 Ivble2>$ 
°~(e+e~e J~ 

2.8. Chains of groups 

We now collect the interrelations of functions, coefficients~and redu- 

ced matrix elements classified according to a group G' and its subgroup 

G. The most important case is that of the rotation group and a point 

group o 
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In general~ a representation a j of G l decomposes into a direct sum of 
representations a of G, 

~(G ~) = ~ n(~,a)a(G) , (2.65) 
a 

according to the multiplicity rule: 

• (, (2.66) n(~,a) = ~cGOrdC a' 

The basis functions of ~(G') are adapted to G by the unitary transfor- 
mation : 

la/~apD = Z<~p/ala/~aPa >. laP~ (2.67) 

lalp~ = ~--<a~aPala/Ja>- lal~aPa> (2.68) 
~a 

A definition of the adaption coefficients, which is independent of the 
special basis, can be given in analogy to (2.22): 

ordG'Ig6~ D d'mukg ,'D a'pq,g)~ = dima'IZ<dmI~ap><a'~aq I ~>(2.69 ) 

The factor dima -I comes from a different normalization: 

T4~apt~m><~mlg~bq > = 6(~,~)6(a ,b)6(p ,q)  (2.70) 

Y-<~mla'=ap><d, apla~ > = 6(m,n) (2,71) 
tva 

All terms classified according to the representations and bases of G I 

can be adapted to the subgroup G by this transformation. A case of 

special interest is that of the 3jm symbols: 

= < la ap> ml  bq>< nlc cr> (2 .72)  
P q  

Applying the WET with respect to G to the left hand sidejwe get: 

la/alb/c/) ~r albl ~'(~ q 
b c 

\pq D c,~ - 

This is nothing but Racah/s factorization lemma, which implicitely 

defines the isosoalar factors (or short isoscalars): 

a~c e 
Is ~b c/D P~" 

The isoscalars are invariant to even permutations. Odd permutations 
yield the phase factors: 

b z y~)s= {a~o~ } ~abm]}.Is ~ cy ~b]D (2.75) 
Is ~ Olrl 

The complex conjugation property is: 

IL+ff+~l ~ ' a' b ~ ) ~ Isle ~ ~ = (2.76) 



The orthogonality relations of the isoscalar factors are: 

a'b'c' 6' 
pimc'*Is (: i ) E * I s [ ~ ~ f ) ~  = 6(a,s)6(b9t)~(a,a)6(p,'c)6(~,q)*dimc 
YC (2.78) 

The isoscalar factor containing the identical representation of  i is 
very simple: a/ b/ 

IS(a p = b(a*,d6(a,p)6(a+,b)b(c,i)6(q,i)~dima/dima1 
a b i q  (2.79) 

Further,there is the following sum rule: 

If we invert (2.73) more carefully by using (2.26), we get a more ge- 

(2.74): 

abd q* (2.81) 

= 6(c,d)6(r,~)-dimc-~*1s 

From the WET and (2.73),we get the relation between the reduced ma- 
/ 

trix elements with respect to G and those with respect to its subgroup 

where the operators, of course, are adapted by: 
1 

bf !cbpb = pfj&~dpb~>*~~ (2.83) 
m 

The combination of the WET and group chains has been discussed in 
[is, 231. The idea of the isoscalar fa~tor~stimulating the defini- 
tion of the polyhedral isoscalar in section 6,first came to the au- 
thors knowledge by an earlier paper [24], where the isoscalars are 
termed V-coefficients of the rotation-point group. 

2.9. Product groups and double tensors 
In the opening of section 2,i.,we allowed the symetry group to 

be a product group. Since the irreducible representations of a pro- 
duct group are the direct products of the irreducible representations 
of the single groups, we have a general doubling of the quantum num- 
bers Dl, section 3.2: 

D$, ,d(d = D;,(S) *~$g') (2.84) 

with ge G, , ~ ' E G / ,  and gg'e G~G'. Consequently the same applies to the 
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I I a . i , ( 2 .85 )  ~ ,aa (gg )  =~,  (g)  , ~ ( g )  ! 

(aa r bb t cc'~¢~ a b c ¢ a Ib' c'~ (2.86) 
pp, qq, rr u = (p q r ) "(plq, zJJ 

and further to all nJ symbols. As concernes the states and operators 

the doubling applies, too, but in general not the factorizatlon. The 

operators with the transformation property 
a a' a~ 

are termed double tensor operators. The WET in this case reads: 

<~ffpplTqq~6ddrr > = ~<~ff~llTa~l[6dd1~, ~(f+a d~etf~a / d~ r j ~p, q, (2 .88 )  Ec p q r 'j 

States and operators allowing a factorization are the (one-par- 

ticle) spin orbitals and the summands of the spin-orbit coupling ope- 

rator. On the contrary! the many-elecron states of the rs-coupling and 

the occupation operators of spin orbitals (cf. section 19) can not be 

factorized because of the antisymmetrization invol~ed. Consequently 

the coefficients of fractional parentage (cf. section 19) allow no 

factorization, too. 

The possible faotorization is also important to the symmorphic 

space groups, since they are direct products of the point and trans- 

lation groups (of. section 21). 

2.10' The significance of reduced matrix elements 

As mentioned in the introductlont the RMEs of one-centre one-parti. 

cle matrix elements in essence are radial integrals. The same there- 

fore applies to the semi-empirical parameters of the atomic spectro- 

scopy and the ligand field theory even being defined without previous 

knowlegde of group theory (cf. the introduction of [25]). In other 

casesp the meaning of the RMEs is not so obvious and more indirect: 

For compound operators we have the relations (2.62 and 64). 

For many-particle states t the RMEs are traced back to the RMEs of 

one- and two-particle states by the technique of fractional parent- 

age [26, 27]. We come back to this subject in section $9 by a diffe- 

rent approach. 

The RMEs of the symmetry-adapted LCAO-functlons have not been ana- 

lysed, so far, and are the main issue of this treaty (cf. section 5 

sad in a more general context section 20). 
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3. Representations induced ~y~po~yhedral ede~ 

This section closely follows [9, 11]. In the theory of molecules/the 

first step towards quantitative considerations of symmetry is the for- 

mation of symmetry-adapted (s.-a. in the following) linear combinations, 

especially molecular orbltals and symmetric coordinates. This is well 

known and done heuristically in simple cases or systematically by the 

projection operator technique. The insertion of such symmetrized mole- 

cular orbitals into molecular matrix-elements results in rather com- 

plex expressions [28]. We therefore prefer another approach by study- 

ing the symmetry-adaption of arbitrary "'objects" defined with respect 

to the vertices and edges of the polyhedra (and later on with respect 

to the faces, too). 

We consider molecules AmBnCp... with a symmetry group G. This may 

be optionally a point group, a double point group~or the direct product 

of a point group and the spin group SU(2). 

The positions of equivalent atoms A, B etc., which constitute a sym- 

metric polyhedron, are indicated by the vectors , B k etc, where i 

and k give the numbering within the equivalent sets. The distance vec- 

tors Uik=Ai-Bk etc. likewise form equivalent sets. 

In order to simplify the notation and to allow differences of the 

distance vectors againpwe use beside the double indices a simple num- 

~ -~ The correspondence of ~m with~ and ~ or Of~r wit h bering k @ Sm" 

A~ and B k can be expressed by a topological matrix ~(i~), which dis- 

apearsrif not ~+~k+~r=O. The value in the other case could be chosen 

equal to one a but~because of the analogy with the 3jm symbol~ it is 

more appropriate to choose I/~-~-U~, where Z(ABU) is the number of 

all triangl~ equivalent to ~+~+~=0. The analogy mentioned will be 

treated in section 6. We sum up the definition: 

for 

~(ikr ) = 0 for Ai+Bk+Ur~O (5.1) 

correspondence ~ik @~r can be expressed as Now the follows: 

~ -ABU 
= ~ - ~ - - ~  o ~ ( i k m )  .Urn ~ i - B k  ~ -  ( 3 .2 )  

Um 
L a t e r  on we s h a l l  use correspondences o f  t h i s  type a lso  f o r  o t he r  num- 

bered ob j ec t s  i n  the  p o l y h e d r a l  f ramework.  

The s imp le  number ing a l l ows  to  t r e a t  the e q u i v a l e n t  se ts  S on an 

equa l  f o o t i n g  w i t h  the se ts  A o f  atomic p o s i t i o n s .  We thus can w r i t e  

i n  a n n i f i e d  manner the  ( i n  gene ra l  r e d u c i b l e )  r e p r e s e n t a t i o n  o S o f  

the  symmetry group G~induoed by the e q u i v a l e n t  se t  S: 

Acco rd ing  to  the  c h a r a c t e r  f o rmu la  (2 .10)  t h i s  r e p r e s e n t a t i o n  d S ear 
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be decomposed into a direct sum (2.11). For finite and compact groups! 

this decomposition is guaranteed by Maschkels theorem [29]. Moreover~ 

it is proven that the decomposition is achieved by a unitary transfor- 

mation [30] : 

z~(S~ar~i)a~k(g)(qlS~bs) = 6(a,b)6(~,~)D~s(g) (3.4) 

or ~ ~k(g)(~k~S~as) = ZD~s(g)(~itS~ar)r (3.5) 

with Z(s art i)( Is bs) = 6(a,b)6(~,~)6(r,s) (3.6) 
1 

--~ -~ (3.7) and 7-(sils~ar)(S~artS k) = ~(i ,k) ,  
~ a r  

where ~ and ~ are the multiplicity indices. On analogy of (2.69) 7 the 

transformation coefficients also can be defined by: 

ordG'I~_(g)D a (g)~= dima-lZ(~ilS~ar)(S~as~S~) (3.8) 
g~G IK rs 

This relation is derived from (3.5) by (3.7) and (2.4). The notation 

of the transformation matrix is chosen following Dirac s bra-ket for- 

malism. The analogy is twofold. At first (~IS~ap) is analogous to 

<amla~ap~. In the same way as we adapt functions to the group G by 

(2.67), we can adapt s-functionsls(r~=~#s~pcentered At the atomic po- 

sitions ~ by: 
< ls  ap> = (3.9) 

1 
This is the formation of s.-a. LCAO-MOs by linear combination. Quoting 

Cotton ~i]lwe therefore call the coefficients (E~lA~ap) SA~C coeffi- 

cients (i.e. coefficients of symmetry-adapted linear combinations). 

More details concerning this aspect are elaborated in section 5. We 

can invert (3.9) by (3.7): 

y--< lsA a (A apl ) =ap 
which, of course, is analogous to (2.68). 

But there is another interpretation of (3.10). ~-~ils~ = s(~-~ i) 

may be regarded as a function of the discrete variable A i. (3.10) then 

of these functions into (A~aPl~i) with expansion gives an expansion 

coefficients ~IsA~ap~ according to (3.9). Thus the SALC coefficients 

be s.-a. functions of the positions ~i" From this point turn out to 

of view they are analogous to s.-a. Hilbbert space functions r!~ap . 

Because this second analogy is very important and fruitful, we work 

it out in six parallel steps: 

la) Consider the Euclidean space R 3. 

Ib) Consider the set A = {A~' A2''''Az(A)~' where Z(A) is the number 

of equivalent positions in A. 
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2a) Define the functions ~(~:~ on R3, i.e. r*(R 3. A 

2b) Define the functions G(A-~i)=(~ilG) on A, i.e. ~i # A. +) 

3a) The kets ~ subtend a Hilbert space H(R3) , <~I~ being the space 

representation of I~. 

3b) The kets ~G) subtend a finite, unitary space U(A), (~i~G) being 

the space representation of IG). 

4a) In H(R3) there are s.-a. functions <~I~ap> transforming according 

to (2.17). 

4b) In U(A) there are s.-a. functions (~i~Agap) transforming according 

to 

(g'1~ilAgap) =ZD~p(g)(A~IAgaq) (3.11) 

Because of (3.3) the transformation property (3.11) is identical with 

(3.5). This means, that the s.-a. functions in U(A) are just the SALC 

coefficients, if the appropriate ~ normalization is chosen. 

5a) The s.-a. functions <~l~ap~ are orthogonal and complete, if 

~ap 

/~@ap~r~l~p~d3r = 8(a,~)8(~,~)8(p,~) (3.13) 
5b) The s.-a. functions~~--(~IAgap) are already orthogonal and complete 

because of (3.6/7). 

6a) Because of (3.12/13)Iwe can expand every function ~I~) #H(R 3) 

according to 

~ap 

with the expansion coefficients~ 

<mapl~> = /~aPl~l~>d3r (3.15) 

6b) Because of (3.6/7)~ we can expand every function (~ilG) ~ U(A) 

according to 

(~ilG) ~--(AgaplG) -~ = (AiIAgap) (3.16) 
sap 

wlth the expansion coefficients: 

This expansion theorem, which is based on (3.6/7) is the main result 

of our discussion. Eq. (3.10), which wasour starting point, is now 

+)Here a note on our phraseology may be in order. In a puristic way 

of speaklngTsi~is no function, but a value of the function sin. In 

the same sense G(~i) or (~i~G) is no function (or vector in U(A)), but 

a value of the function (oracomponent of the vector) ~G). But to sim- 

plify matters r we keep calling (A~G) a vector, sinx a function, and 

aik a matrix. 
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a special case of (3.16). The symmetry-adaption (3.9) is a special 

case of (3.17). Therefore in general (A~aplG) may be interpreted as 

the s.-a. version of (~i~G). 

functions (~ilG)£ U(A) often result from the ordinary function The 

of H(R3) by inserting edge vectors, i.e. r=~ i. A case of special in- 

terest are the spherical harmonics 

<~llm> = ilYlm(~/r) , (3.18) 

where the phase is chosen in accordance to section 2.3, i.e.~ll+m~ - 

~m~>, and the s.-a. spherical harmonics: 

<~ll~ap> = ~m~l~apX~llm > (3.~9) 

If we insert the argument ~i into these functions, (3,16/17) yield: 

<rill ap > = o for n(A,a) = O, (3.2O) 

otherwise: 

<~i I l~ap> n~a) (~i iA~ap) • c (A~a,l~) (3.21) 

c(A a,l=) = Z ( A ~ a p l ~ ) < l l ~ a p >  (no [ !) (3.22) 
i - - - -  P 

At the first sight/this important result is somewhat surprising. As 

functions over R 3 there are infinitely many, linearly independent sphe- 

rical harmonics, but as functions over the set A the most of them are 

linearly dependent. This results from the special directions enforced 

upon the edge vectors by the symmetry. The expansion coefficients 

(5.22) do not depend on the numbering of edges and the choice of coor- 

dinate axes. They are a property of the polyhedral framework. The ex- 

pansion (3.21) has been used in B2] to expand the spherical harmonics 

of intergral formulae. A table of the coefficients for a tetrahedral 

molecule is also given there (cf. also table 26). 

If the representation a is contained only once in ~AI(3.21) pro- 

vides us with a simple tool to calculate the SALO coefficients. We 

only have to insert ~i into a s.-a. spherical harmonic tabulated in 

[21] and get a SALC coefficient up to a normalization factor. This me- 

thod has first been used in ~0]. If the multiplicity exceeds one, pro- 

blems of linear independence and orthogonality arise and the coeffici- 

ents are determined only up to a unitary transformation: 

[u ~ (A IA~ p) (3.23) (~ilA=ap) = Aa. --~ a 

For each set A and each irreducible representation a~a new choice has 

to be made. These problems are settled systematically in section 12, 

where also a uniferm choice of SALC coefficients will be proposed for 

all edges of all molecules sharing one symmetry group. In the same 

section the calculation of the expansion coefficients (3.22) is redu- 
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cod to a smaller class of coefficients. 

Because of the one-to-one correspondence Ai, B k ~ U r accordlng to 

(3.2)! every function~ f(~.,--~)IBk can be regarded as well as a function 

of the related Ur: 
-ABU f 

f(~i,~) = ~- ~Z~-------~x( ikm ) (~m) = f(~r ) (3.24) 

Um difference ~i-~ only, the If the funtions considered depend on the 

special case ~=~i makes no trouble. The edge vector ~riS simply equal 

to the zero vector. This natural point of view has been adopted in the 

papers [10, 12, 32]. But if the functions depend on ~ i and ~ separate- 

ly, we need a more sophisticated treatment of the case Bk=A i. We have 

to discriminate the zero edge vectors Ai-Ai=O i according to their po- 

sition (i.e. with respect to set A and number i), since the functions 

f(~) do depend on A and i. 

This new interpretation is consistent with the following correspon- 

dence of edge vectors between atoms, i.e. k = - , and of vectors 

centred in the origin. These vectors are defined by~ 

Sik = ~IAi + ~2Bk (3.25) 
An incommensurable choice of the coefficients ~i guarantees the a 

one-to-one mapping, l.e. ~ and Sik~Ski especially. Because. of 
this mapping ~ik ~ ~ik ~allik~Tlm functions of Sik can be regarded as functions 

of Sik. Especiallyholds~ 

: (sik i  ap) (3.26) (Sik~S~a p ) _-,I S l 

In the case of zero edge vectors w~have ~= 5i~i+~2~i=(~I+~2)~i , 

which yields the reasonable correspondence~ ~i" By (3.18)~the sym- 

metry-adaption with respect of arbitrary polyhedral edges is reduced 

to the symmetry-adaption with respect to vectors in the centre of sym- 

metry. Correspondences of this type will prove to be useful also for 

objects related to more than two centres. 
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4. Bicentric matrices 

4.i. Molecular integrals 

The central theorem of the quantitative group theory is that of 

Wigner and Eckart. It applies to matrix elements of s.-a. functions 

and tensor operators refering to the same centre of symmetry. On the 

oontrary~ all calculations of molecules starting from localized orbi- 

tales at the atomic positions lead to polycentric matrix elements. 

The following theorem applies to bicentric matrix elements of tensor 

operators and includes the WET as a special case. 

We proceed from an arbitrary set of s.-a. functions of species a: 

~(~) = ~l~ap~ (4.1) 

i.e. with the tranformaticnal property according to (2.6/17): 

~IU(g) I~ap~ = ~g-i~l~ap~ = ZD~p(g)~l~aq~ (4.2) 

By translation to the different atomic positions~we generate the 

orbitals~ 

~IAi~ap~ = ~r~-A~ ~ap~ (4.3) 

As usual in quantum chemistry [33]jthe position is not indicated by 

a vector, but the set A and the number i are treated as additional 

quantum numbers. The special case of s-orbitals has already been men- 

tioned in (3.9). 

The tensor operators are defined by (2.58). In what followsjthe ope- 

rators refer to the centre of symmetry or are invariant under transla- 

tions t as the operators of momentum and kinetic energy. The general case 

of shifted operators is treated separately in section 8. The main exam- 

ple of this case are the potential operators. But we stress that s.-a. 

= Ir-Ail)~ are allowed for, because theentire sum re- sumsTlike V ~i f( ~-~ 

fers to the centre of symmetry. The difference between these sums 

and the invariant operators does not matter in the present discussion~ 

but will give rise to the distinction of proper and improper bicentric 

matrix elements later on. 

After these preliminariesFwe state the factorization theorem for 

the bicentric matrix elements: 

~Ai~aam~T~IBk~bbP~ 
(4.4) 

= ~'-~'-'A a T e B b,dS~.,a+b d 8(d+c 
+ 

~62~e ~ ~a ~b ISEe tm p q) -q n ~)q'(Sik~S~er)-* 

with S~k= ~i--~" If we skip all discriminating multiplicity indices, 

the geometric structure contrasts better: 

• -( a+b d)(d+c e + 
~Aiam~T~IBkbp> = ~e(AallTCllBb)~e "m p q--q n r)'(Sik~Ser) (4.5) 
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The invariauts (A~aalITCIIB~b b) defined by (4.4) are independent of 

the numbering of atoms and the choice of axes. In general they depend 

on the lengths A, B, and S. 

Taking into account (3.2),(4.4) can be given another form, which at 

the first sight looks more complicated. But it proves to be useful for 

the further calculations, because the topological matrix connecting 

Ai,-* ~, and S r leads to important, geometric results. 

(Ai~aam ~ T~ ~ Bk~bbP ~ ( 4.6 ) 

= ~--~-- allTCllB~bb)s~ edSo" (m a+b d)8(d+c D. -ABS 
~pS~se~(A~a p q" "q n Islet) 

The sum for S runs over all sets of equivalent edges and the topologi- 

cal matrix selects the right one. This is necessary, since the verti- 

ces of the tetrahedron or the octahedron are connected to each other 

by inequivalent sets of edges. 

Proof of (4.4): In the case of a translationally invariant operato~ 

the matrix elements are functions of the distance vectors ~ik only. In 

the case of an operator related to the centre of symmetr~ they are mo- 

reover functions of A and B, because the triangles are specified defi- 

nitely by A, B, and ~ik" In both casestthey are functions of the edge 

vectors ~ik and therefore expandable according to theorem (3.16): 

~i~aamlT~Bk~bbP) = ~--(SEer~X)(~iklSEer) (4.7) 
~e 

with the collective index X=(Ai~aamTcnBk~bbP). According to (3.17) the 

expansion coefficients are 

(ScerlX) = ~(S~erlSik)~i~aamlT~IBk~bbP)j (4.8) 

-~ (i.e. the distance must where the sum for i, k is limited to A i- =Sik 

belong to set S). The coefficients (4.8) transform as a direct product 

a+Xb x c × e + and thus can be factorized. For this purpose~we only have 

to generalize the WET to a fourfold direct product: 

= ~b°)Sce -m p q- -q n 
(ScerlX) ~(A~aallTCll ~ ~d6D'( a+b d)8( d+c ~D (4.9) 

If we insert (4.9) into (4.7), the proof is complete. 

From (4.8/9) 7we can isolate the invariant and express it by all ma- 

trix elements: 

(A~aa~TC]~B~bb)~ (4.10) 

b+d~6( d ~+~)O(S~erlS~k)(Ai~aam~T~#Bk~bp ) ~ ~ ~"2 b dimd'l~( ~ p q- -q . . . .  

with the same limitation of i, k as in (4.8). We have used the phase 

~e}= i, because e must be a tensor representation even for double 

point groups, i.e. including spin-orbitals in the matrix elements. 
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If integral formulae are at hand, we can calculate the invariants by 

(4.10). Since the wit of (4°4) is to express many matrix elements by 

few invariants, this calculation is only efficient, if the 3Jm symbols 

and SALC coefficients subsequently can be eliminated. In section 15 

such a calculation is carried out. The invariants defined by (4.4) or 

(4.10) shall be called BRM (bicentric, reduced matrix element). 

Because of the relevance of scalar operators, we repeat this spe- 

cial case of (4.4/6): + 
~i~aam~T~Bk~bbP~ =~(A~ITIIB~bb)~Ee'(~+~ ~)Sdime-I/2(Sik~Scer) 

o6e (4.1~) 

Z ~-~Z(-ABS)/dim~'(A~aalITIIB~bb)~e(~+~ e~8 -ABS (~t~S~er) = r" ( ikt ) b~eS~ + 
where more precisely (A~a~l T~ B~bb) ~Ee = (A~aallTllB~bb) e ~i 

S~ 

4.2. General bicentric matrices 

The relevance of (¢.II) goes far beyond the one-particle integrals. 

By careful inspection of the proof of (4.4) we observe that the matrix 

does not need to be an integral. It only has to transform in the right 

way under the symmetry operations. Thus we can reshape (4.11) as a ge- 

neral matrix theorem: 

In the following~ r are arbitrary vectors fixed in a molecular fra- 

mework (i.e. not necessarily distance vectors between atoms). If we 

can show that a bicentric matrix M(~r)Ai~aam,Bk~bb p -  transforms accor- 

ding to 

M (g-i~r) Ai~aam, Bk~bbP ~ (4.12) 
D a b • 

thenthe bicentric matrix has the following factorization: 

M(~r)Ai~aam,Bk~bbP ~g(1~aallB~bb)8~e(~+~ ~6dime'I/2(~kISEer)g A ~ 
= O~e S~ ~ ~ ~ ~ ~?.~j 

M(A~aaUB~bb)~ceo is a scalar function of the vectors The generalized BRM 

~ with to the G. In the and respect symmetry group present contextl ~ a 

~b mean additional indices not affected by the symmetry operations. 

Examples of such bicentric matrices being no integrals are the in- 

verse overlap matrix of the atomic orbitals in a molecule, the one- 

particle density matrix in the AO basis, and the matrix of the vibra- 

tional force constants with respect to the atomic elongations. The 

last example has already been dealt with in [12]. The analogous gene- 

ralization of (4.4) would be needed, if one considers anharmonic ef- 

fects. 

The inversion of (4.13) is: 
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= p r" " ,Sik)M(r)Ai~aam,Bk~bbp(4"14) 

As a first, simple examplelwe now can determine the BRMs of the unit 

matrlx in the A0 basis: EAi~aam,Bk~bb p = 8(A,B)8(i,k)8(~a,~b)~,b)8(m,P) 
The result is: 

E(A~aallB~bb)~ee 
(4.~5) 

= 8(A,B) 6(~a,~b) 8(a,b) 6(8, OA) 8(e, I) 8(e, I) 8(8,I)~ Z (A) .dime' 

Since the product of two bicentric matrices is a bicentric matric 
again, the BRMs of the product matrix is determined by those of the 

factors. But we postpone this calculation, because we need some results 

of section 6. 
The integral and non-integral, bicentric matrices often refer not 

directly to the irreducible representations of the molecular symmetry 

group G, but to the angular momentum basis, for the atomic orbitals 

and elongations are at first given in this basis. We then are confron- 

ted with matrices of the type M( r)Ainalama,Bknblbm b. Since the angu- 

lar momentum basis is in general reducible with respect to G, we first 

have to adapt the basis according to (3.19) and then apply (4.13). 
This yields the general structure of bicentric matrices in the angular 

momentum basis: 

M(~r) Ainal area, Bknblbmb = ~a~ e~e M(Ana I a~allBnblbPb )~ce ~ area ll a~aPa~( 4.16 ) 

~ ~!6"dime-I/2(~i "~bPbPb~lbmb~( klS~ep e) 
b 
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5. The matrix elements of s.-a. molecular orbitals 

The s.-a. MOs can be built up from the AOs IAi~aaPa ) defined by (4.1/3). 

As has been shown in [iO, ii] I the complete set of symmetrized LOAOs 

resulting from an equivalent set ~Ai~aaPa ~ is given by; 

~(Ace,~aa)yCPc> = ~K(yePc,Aige,aPa)-~Ai~aaPa~ (5.1) 
:Pa 

with the compound SALC coefficient~ 

e+a+c~T.''-~J~ e " K(ycPc,Aice,ap a) = ~cldi~.2(pePaP~ ~iI~ pe # (5.2) 

In comparison to [10, Ill7 the phase factor ~c~ has been included in 

order to allow for spin-orbitals. The definition is in accordance 

with (2.34). 

The proof of (5.1/2) results from the transformation property of 

the A0s: 

~ki(g) • I Ak~aaq~ (5.3) U(g)~Ai~aaP~ = ~q D~p(g) A 

Since the SALC coefficients reduce the representation ~A and the 3jm 

symbols the remaining product representation, the compound SALC co- 

efficients reduce the direct product ax~ A in (5.3). 

In the appendix i this method of symmetry-adaption is compared to 

the conventional technique of the projection operators. 

If we now consider the matrix elements of tensor operators, they 

can be factorized as usual by the WET: 

~(Ase,~aa)ycPc~T~(B~f,~bb)8dp d) 
~g (5.4) 

= l<(Age, ~a a) ycll Tgll (B~f, ~b b) 8d>=(~+~ ~) = 

Now the ordinary, reduced matrix element of (5.4) is related to the 

BRM in the following theorem: 

~e e, ~a a)Y ~I Tg~ (B~f, ~b b) 8d>= = ~d} ~c +dg=~Vdimc. dimd" ( 5.5 ) 

____ rc+d÷g÷]~ (-AB) 
~-~@SS~k ~ b+h+~ e+f k ~" 

ySe 

In this theorem appears a typical, geometric invariant of the polyhe- 

dral framework, the "polyhedral isoscalar". It refers to the equiva- 

lent triangles (-ABS) and is defined by (6.6). The details are dis- 

cussed in the following section. 

The derivation of the theorem (5.5) is as follows. We first solve 

(5.4) for the reduced matrix element and th~insert (5.1) into the 

ordinary matrix elements. This yields sums over bicentric matrix ele- 

ments, which are replaced by (4.6).The five resulting 3jm symbols are 
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collected in a 9j and one 3jm symbol using the rule of de-Shalit (2.54). 

Except for the BRM and the 9j symbol the remainder is equal to the 

right side of (6. 6 ) and thus suggests the definition of the polyhe- 

dral isoscalar. 

The skipping of all additional indices in (5.5) Shows again the es- 

sential structure, which is given by a triple sum only: 

~( As, a) cll T g ll(Bf, b) d~ = ~d~ ~ c+dg)V dimQ. dimd' ( 5.6 ) 
. ,. c~d~+-- ~A B 
~--'~Z(-ABS) ~c f± ~I.Pis ( o+~ S).(AaHTgl~b)hk 
hSk (a bThrJ ~ 

If we regard the reduced matrix elements of the s.-a. MOs as the 

physical properties of a molecule, we can say: The theorem (5.5/6) ex- 

presses the non-local invariants representing the physical properties 

by the BRMs, the local invariants of the coordination. This connection 

is mediated by the sums for S and k, i.e. by a sum over the different 

coordinations of the atoms and a sum over the representations k con- 

tained in aS. The sum for h is more technical. As d in the sum (4.5) 

it counts the multiplicity of the identical representation in the four- 

fold product a+xbxg~k + (cf. also eq.(7.15)). 

If T g is the Hamiltonian of the system at hand, the BRMs (with S~O) 

on the right side are the invariant representatives of the resonance 

integrals and describe the chemical binding along the polyhedral ed- 

ges S. These invariants thus are the appropriate candidates for a 

semi-empirical parametrization (HGckel, Wolfsberg-Helmholtz). The au- 

thor is of the opinion that relevant parameters must not depend on 

the numbering of atoms and the choice of axes (cf. section 13). 

From this interpretation we conclude that (5.5) is the first, poly- 

hedral example of the structure (i.2). The geometrical factor in this 

case is (c+d+g+~ (_A B ) 
GEOi(x,y,z) =~d~c+dg~;~Z(-ABS)dimc.dimd'.2~e f±k+~.PIs e ~ S (5.7) 

~a b~h )D e+f k 
76e 

with x=(AaBbg), y=(~eyc,ofSd,~), and z=(hDeS~k). (5.5) then reads: 

gAee,~aa)Tc,'Tg~(B~f,~bb)6d~ = z[GEOi(x,y,z).(A~aallTgllB~bb)h~k8 (5.8) 

In order to invert this relation we need an orthogonality relation 

of the geometrical factors for a fixed constellation x=(AaBbg). From 

the relations (2.55) and (6.9/i0) we derive: 

2~o1(×,y,~f.a~o1(x,y,~') = 6(~,J)/dimh (5.9) 
Y 
~-dimh" GE0! (x, Y, z j - GEOI (x, Y, z ) ~ ,y) (5.i0) 
Z 

and further the inversion of (5.8): 
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(A~aaHTgHB~bb)h~k 8 = ~dimh. GEO1(x,y,z ) • <(Aae,~aa)yclPgU(B~f,~bb)6~ 
Y (5.11) 

This relation may be used to adjust semi-empirical parameters. 
As in the preceeding section~we write the formulae for the scalar 

operators again separately, whereby the 9j symbol reduces according 
to (2.52/53). (5.4) then becomes: 

 A e,  a) Opc IT I (B  , bb)SdPd> (5.I2) 
= 6(c, d) 6(Pc, pd)~A~e, ~aa) ycll T ~(B~f, ~bb) 6c~ 

and (5.5): 
~(Ace,~aa)Tc~Tll(B~f,~bb)6d> = 6(c,d)~b~c+fb6~ ~ (5.~5) 

r e f+k +~ I-A B S| 
• ~-D~S~k~- "ab+k~. Z (-ABS)/dimk',~h+L~ a+-+ ~,x.,~PIsl~ J, ~.Jw i e~_~e~f kI~ ~ • (A~alIT~I B~_ bb)~.. 
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6. Pol.Thedral coefficients referrin~ to edges 

In section 3jwe have noted the parallelism of the SALC coefficients 

(~i~A~ar) and the subgroup-adaption coefficients <~m~a1~ar~, since both 

types of coefficients decompose reducible representations of the group 

G. The analogous pairs of equations are (2.69) and (3.8), (2.70) and 

(3.6), (2.71) and (3.7). We now pursue this parallelism further and 

show that it also comprises the 3jm symbols of G/and the isoscalar fac- 

tors of G l~G. 

The representations ai(~) etc. are coupled by the 3jm symbols of the 

group G I, which in this section is supposed to be simply reducible. In 

other words the 3Jm symbols of G j couple reducible representations of 

G. This observation suggests that there might be also a coupling of 

the reducible representations o S of G. Indeed, this is true and the 

part of the coupling coefficients is now played by the topological ma- 
ABC 

trices X(ikl). The analogue of eq. (2.25) is: 

~ik(g)~ 1 C ABC ~fABC~ (6.1) 
m(g)°pq(g)~(ilp) = ~kmq' 

This equation represents the mapping of the triangle Ai+Bl+~=0~ onto 

the equivalent triangle A~k+~m+~=0 by the operation g. The analogue 

of the orthogonality relation (2.26) is: 

ABC ABD 
~(klm)~(kln) = 6(C,D)8(m,n)/Z(C) ! (6.2) 

where Z(C) is the number of edge vectors of type C. Note the possible 

difference of Z(ABC) and Z(C), since one edge vector of type C may be 

shared by different triangles of type AB0. In this case! 0 must be in- 

variant to some symmetry operations. Each C I is shared by q=Z(ABC)/Z(C) 

triangles. Since ~+Bl+~m=0 excludes Ak+~+D =0 , the left side of (6.2) 

is zero unless ~m=Dn . If now Cm=Dn, there are q non-zero sIJmmands and? 

because of the normalization chosen in (3.1)ieq.(6.2) is valid. 

If the vectors of type A and B point from the centre of symmetry 

to certain positions, we have Z(ABC)=Z(C) and each C 1 uniquely deter- 

mines a pair (~i' ~)" 0nly in this case~we get the second orthogona- 
lity condition~ 

C)~(ikr)~(lm r) = 8(i,1)8(k,m) j (6.3) ~rZ( ABe ~a 

the analogue of (2.27). When using consequences of (6.3)jwe allways 

have to make shure that Z(ABO)=Z(C). 

We now proceed as with the 3jm symbols of the supergroup G and trans- 

form the topological matrix into the s,-a. basis (cf. (2.72)) : 

m 
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According to the WET~we get the analogue of Racah~s factorization lem- 
ma (2.73), 

= IPIs opt 'klm' ! (6.5) 
s ~abc# e 

which defines the "polyhedral isoscalar factor" (cf. (2.74)) : 

ABC 
Pls I~, 1 ABC -- = (Bs~B p l) (Ct I CTcm) (klm) (6.6) r~s m(rst) (~r IA~ak) ~ b -~ abc 

~abc #E 

Since the topological matrices are real and (by choice) invariant to 
all permutations of columns, we have the following symmetries of the 

polyhedral isoscalars. They are invariant to even permutations and 

odd permutations yield a phase factor: 

PIs e~T" = {abceI.PIsl~T~ (6.7) 
labcle ~acb E 

The complex conjugation is simple: 

~ABCI~ I A B C 1 
Flsl~P~| = PZsl~ p ~ I (6.8) 

/abc! ~ ~ a+b+c+J e 

From (6.2) we derive the first orthogonality relation of the polyhedral 

isoscalars ( cf. (2.77) ) : 

le ABD ~- ~-PIsl~ C PIsl~p~ I = 6(C,D)8(T,~)d imc/Z(C)  (6 .9 )  
~apbe ~abc I abc I e 

The analogue of (2.78) following from (6.3) is subjected to the re- 

striction Z(ABC)=Z(C) : 

IABc ~ I ABC / 
~Z(C)PIsI~PTIPIs~o~ T = 6(a,s)B(b,t)6(~,c)8(~,~)8(E,~)dimc (6.10) # ~abc le ~ stc 

Analogous to (2.79/80)/we derive the special case 

PIsl~Ol = 6(-A,B) 8(~, p) 8(a+,b) 8 (¢,I)V-~/Z (A), (6.il) 
abl le 

and the sum rule~ 

~.PIs ~ e ~ = 8(a,oa)8(~r,i) (6.1~) 
• a ~ a a+l 

Instead of (6.6))we can derive from (6.5)lby the help of (2.26)/the 
more general relation analogous to (2.8i): 

ABC 
r~s ~ (rst) (~ A~ak) (~s IB~bl) (~t 1C~cm) ~abd~ ~kln ~ 

1 = 8c,d)8(m,n).dimc-i.PIs ~pT 
labc e 
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This relation allows several rearrangements like~ 

~-~(r~s~)(~r,A~ak) (~s~B~bl)= H--Pis [~] (klm)abcE(C~cm~Ct )--* (6.14) 
rs ~yc laoc IE 

A first application of the polyhedral isoscalars we have already met 
in (5.5) because we got an expression including the righthand side of 
(6.6). The polyhedral isoscalars are the group theoretical, i.e. inva- 
riant representation of the triangular conditions like~+~+~]=O. As 
we shall see later onrsuch triple relations of "polyhedral objects" 
can be generalized. 

Another applicatlon~already announced in section 4presults from the 
product of two bicentric matrices: 

MAi~aam,Bk~bb p =~cc~nPAi~aam, Cl~ccn'QCl~ccn,Bk~bbP (6.15) 

Inserting this into (4.14) yields the BRM of the product matrix in 
terms of the BRMs of the factors. The derivation resembles that of 
(5.5) and results in: 

f+ M(A~aaUB~bb)~ e = ~b~(ab +eS~H-- ~-- ~--~.S~~.~e b a~8~ 
~ JO~cCT~|almz'Glml~ Cc 

(6.16) 

~e+f ~#~'P(A~aalIC~oC)T~fQ(0~cClIB~bb)u~ 
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7. Triangular coefficients 

_~,i. Representations induced by triangles 

In the same way as the polyhedral edgesTthe triangles and distorted 

tetrahedra subtended in the molecular framework form equivalent sets 

with respect to the symmetry group. These sets again carry reducible 

representations of the group. This is of interest for the functions 

depending on the triangles or pseudo-tetrahedra, for instance the mo- 

lecular three- or four-centre integrals. With regard to this applica- 

tion it is necessary to distinguish the triangles and pseudo-tetrahe- 

dra by valued or numbered vertices. This distinction accords to our 

treatment of the edges as vectors, i.e. as line segments with orienta- 

tion or valued ends. The numbering becom~ essential, if the the verti- 

ces of the triangle or pseudo-tetrahedron are equivalent to each other. 

Thus a triangle or pseudo-tetrahedro is invariant to a symmetry opera- 

tion only, if all its vertices lie on the reflection plane or the ro- 

tation axis. As for the edges we have to take into account degenerate 

cases, i.e. triangles and pseudo-tetrahedra with coincident vertices. 

The extreme cases are the null-triangles and null-tetrahedra with three 

or four coinciding vertices. 

In this section we discuss the symmetry-adaption of triangles. If 

A is a set of equivalent triangles Ai' then these triangles carry th~ 

representation ~Aanalogous to (3.3): 

with the characters 
~(g) = (7.2) 

i 
They are equal to the number of triangles invariant to the operation 

g. Again the representation ~A is decomposed according to the bran- 

ching rule (2.10/ll) with a multiplicity n(~,a). In analogy to (3.4/5~ 

the unitary transformation is given byz 

~(Aear ~ ~i) O~k(g) (Bk I~pbs) =6(a,b) 6(~,p)D~s(g) (7.3) 

The matrix elements (~il~ear) are termed triangular SA]3C (TSALC) coef- 

ficients. The mnitary relations analogous to (3.6/7) are: 

~(~ar~Ai)(~ilApbs) = 6(a,b)6(~,p)6(r,s) (7.5) 

= 8(i,k) (7.6) 
~ar 

Up to now we have used an arbitrary numbering of the triangles 
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irrespective of the numbers of their vertices. The interrelation of 

the vertices and triangles is again expressed by a topological matrix: 

rAACB~ f i / ~  if the ordered triple ~k,~m,~l re~resents the 
vertices of Ai(7.7 ) x t ikml# = I 0 otherwise j 

where z(A) is the number of equivalent triangles in the set~. The or- 

der ACB has been chosen with regard to the molecular three-centre in- 

tegrals (cf. (8.1/3)). 

The topological matrix is utilized to reduce the triangular SALC 

coefficients (Ail~ar) to the ordinary SALC coefficients. The technique 

is similar to (3.25/26). Each triangle~j is mapped onto a vector ~ ~: 

~j = ~--- .~ACB~ 

By the choice of the fixed numbers ~i ~ we have to take care that Rj~R k 

if ~j~&. Since this mapping is biJective, we have ~=~A. Therefore 

the triangular SA~C coefficients of the set ~ are equal to the ordina- 

ry SALC coefficients of the set R: 

In principlejthis relation would allow the total elimination of the 

triangles ~ by the vectors R. Because of (7.8)# an integral with the 

three centres Ak, , and can be regarded as a function of one vec- 

tor ~. Although this interpretation is valid, it might be confusing. 

So we~keep to the more. ,expressive notation~j and use (7.9) only for 

the calculation of (Zlj~ar). 

Using (7.8)7we explicitely show that any function of three posi- 

tions can be regarded as a function over a set of triangles: 

F(Ai) = (~il F) = r--~r~ACB~ ~-T "ikml' "F(Ak'Cm'B1) (7.10) 

The notation (~i~F) suggests the same proceeding as in section 3 and 

the interpretation of (7.5/6) as the orthogonality and completeness 

relations of a set of s.-a. triangle functions. This argument leads 

to the conclusion that every triangle function (Ai~F) can be expanded 

analogous to (3.16/17) : 

(Z i IF) : ~-(n i l~ar) (n~ar IF) (7. ~) 
ga 

with the expansion coefficientst 

(A~arl,) = ~(,4~arl..4i)(~. Io) (7.i2) 
1 

If such a function depends on the intrinsic parameters of the triangles 

only, but not on their orientation in space, then it is invariaut on 

the set ~. In this cdseywe simply write F(A) or F A. An example is the 

reduced matrix element in eq.(8.i). 
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7.2, The coupling of triangular representa__ttions 

The topological matric~ (7.8) are quite analogous to (5.I) and there- 

fore have corresponding orthogonality relations: 

~fAACB~feACB~ 
'i~l' 'j~' = 8(~,~)6(i,j)Iz(4) (7.~3) 

~ZCa~ACB~c~ACB~ 
.... ~ikml ~ ~inpq~ = 6(k,n)6(m,p)6(1,q) (7.14) 

Since ~i uniquely determines the three vertices ~k' ~l' and ~m (7.14) 

is not subjected to a restriction as (6.3). 

The topological matrices (7.8) have four columns of indices. A di- 

reet treatment in the sense of section 6 would lead to a parallelism 

with the group-theoretical 4jm symbols, which couple four irreducible 

representations [34]. But the 4jm symbols can be factorized into 3Jm 

symbols in the following way: 

(abcd~sDe ~,abe,s,e+cd, D-me 
ijkl j = A~iJm ~ ~m kl J cl (7.15) 

The collective index eDe counts the multiplicity of the identical re- 

prsentation in the direct product aX b xcXd. This suggests to try a 

corresponding decomposition of the topological matrix (7.8), which is 

achieved as follows. Instead by its three vertices! a triangle can be 

determined by one of its edges and the opposite vertex. The interrela- 

tion of the triangle ~i' the edge ~'and the vertex ~l is expressed 

by a further topological matrix. For the purpose of discrimination 

from (3.1) I we call it a topological matrix of second kind: 

~2(ASC~ = I/~C~7 if c m is the 2nd vertex and ~r points from the 

-irm- let to the 3rd vertex of ~i (7.16) 
0 otherwise 

The original interrelation (7.8~ now can be decomposed: 

,~ACB, ASC -ABS 
= (irm)~( klr)~Z(-ABS) • ~ikml ) ~r~ 2 (7.17) 

The orthogcnality relations follow immediately from the definition: 

~2irm)~,~SC, 2,8SC,ljrm) = 6(A,e)8(i,J)/Z(A) (7,18) 
rm 

kirm)~ "ipq" = 6(r,q)8(m,p) (7.19) 

Of course, (7.18/19) combined with (6.2/3) yield (7.15/14). Again 

there is no restriction for (7.19), since ~i uniquely determines S~ 

and ~m" 
We now strictly follow the proceeding in section 6 from eq.(6.4) 

onwards. The transformation of 2 into the s.-a. basis yields: 

+~lS+Yl rose IA6dp) -+ " --+ /dso / (SklSO.q)(OmlOycr) (7.=0) 
p q r  / 
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and again the factorization by the WET; 

/~scl l~sc i (dsc~ 
/dsc/ = }'Pms ~ 16~y (7.2Z) 
~pqr! e Idscl "pqr" 

with the "polyhedral isoscalar of the second kind": 

;Asc 
~ , ~-~ ~ cr, ,dec, sfc 'ikm'CASC~(~i ~6dp)(Sk Sosq)~Um~UY I I )~pqr J (7.22) Pie 2 ]6~y = ~---2 

Idsc s 

The orthegonali~y relations follow from (7.18/19): 

}-F--PTs 2 8~y PIs21¢cy/ = 6(~,e)6(6,r#)dimd/Z(A) (7.23) 
~s yce Idsc !e Idscla 

I ~SC l ~ )Pls ~ 8~yl Pls 2 I6~y~,~ = 6(~,~)6(s,s)8(y,~)6(c,ct)8(~,~).dimd (7.24) 
 -z(A / sol , , 

~dsc/a ~d~l~ 

(7.2) again can be generalized to 

2 ASC _ .. dslc~ e ~ ( ) (7.25) 

= 8(s,sO6(q,q~) dims-~Pls2 I ~ o ~ ' 1  
|dscle 

This can be derived from (7.21) by the orthonallty relation (2.26). 

The relations (2.40), (2.81), ~ (6.1~), and (7.25) are all of the same 

type and can be proved by a uniform method. We have a term of the form 

X(S%), the left hand side of these equations, starting now from the qq" 
S S S l expression ~Dpq(g)X(q~) we shift the cperation~in X from term to term. 

In the case of (7.25) for instance~we use the relations 

= ~ rs(g)(A~asI~k ) (7.26) 
s 

~S C 2 {~SC~ {ASO~ 
~'- ~(g)~m (g)~ "jkm" = Z~2 'iln'eij (g) , (7.27) 
km ~ i 

and (2.25). This shifting finally results in~ 

D s X sg ~rX(pr)Drq(g ) (7.28) ~pq(g) (q~) = s~ s' 

Thus X would achieve a similarity transformation between irreducible 

representations. According to Schur#s lemma follows: 

SS X 'ssq 6(s, s~ 6(q, q~ .X(qq) 

where X(q~) does not depend on q. By summation for q with (7.22)~ fi- 

nally follows (7.25). 
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8. Triansular invariants 

The most important examples of functions defined on triangles are 

the molecular three-centre nuclear-attraction integrals. Because of the 

expansion theorem (7.11) they can be factorized as follows: 

<~i~ a aml t r-"-~ ,-~ IB~ bbq> (8.~) 
= 7--  ~(A~alIOr-~ItB%b)~,Jf(-ET~C~AOB~ (a+b c~'E~ 'jikl''m q n' "-Jl~ycn) 

eyo 

By this relation the tricentric, reduced matrix elements (A.alIC.IIB.b)~Tc 

are defined, the abbreviation of which shall be TRM. Because of the 

limited, graphical possibilities the symbol of the TRM turns out some- 

what similar to that of the BRM. But the third centre of the operator 

and the index referring to a set of equivalent triangles should suffice 

for a distinction. 

In order to prove (8.1)twe consider the expression/ 

EC "~P -'> C + In (Ai,Cl.~) = ~'-( a+b nl~-dimc • <~i~aam I I~-~l-11Bk~bbq> (8.2) ~--'m q 

According to (7.10)/In ec is a function of the triangles ~j: 

ineC(Aj) = 5---~tAACB~ -cc ~* -~ ~.~,o,~, ,j i lk,.In (~i,Cl,~) (8.3) 
-co in triangular SALC coefficients. Noting (7.11)lwe can readily expand I n 

-cc transforms according to the representation c, the expansion Since I n 
is limited to the coefficients (Aj~Aycn): 

In Co (~j) = ~(A~aall Cr-IllB~bb)~c (~ j I Aycn) (8.4) 
Y 

We now invert the relations (8.2) and (8.3)Tusing (2.27) and (7.14): 

<Ai~aamll~'.~,-llBk%bq> ">'--(a+bo +, n~,-c. -CO ~ ---> --'~ = I n (Ai, C1,Bk) (8.5) 
~cn "m q 

i-ccri~. ~,.---~, ~-.,-=-,-~ ,AACB, -cc 
n ~ i' l'~k ) = "In (~j ~jV ~)~ jilk ) ) (8.6) 

Inserting now (8.4) and (8.6) into (8.5) we get (8.~). 

If we invert (8.4) by (7.5)~we get 

(A~aa~ Cr-Ill B~bb)~ yc (8.7) 

~ B  a÷b ~<Ai~aaml, ~'.~ |-~ IB~bb~> = T-'-(A?cnlA. )~-~T~( .ilk)dime( m 
Jilk ~ ~ q 

which is needed in section 15. 
Because of the factorization of the topological matrix given in 

(7.17)i eq.(8.1) takes the following form, which is appropriate for fur- 

ther calculations: 

~i~aam ~ |r'-~ll-l~Bk~bb~ = [ ~-"(A~aalICr-IIIB@bb)~..~Z(A)Z(-ABS/ 
-cTcAjSr ~ (8.8) 

+ 
.-ABS~ z [/~SC~ (a+b n c)-c(Aj l~yon) "'~k ikr)~ ~jrl~-m q 



S? 

The main application of (8.1 or 8) is the calculation of the matrix ele- 

ments of the nuclear potential 

v = ~ % / 1 ~ - ~ 1  7 (8.9) 

where QO is the charge of the atoms of set O. The potential contains 

the totally symmetric partial sums 

v C -- ~ l / I r - * - ~ l  , (8.10) 

because these sums are Just the totally symmetric linear combinations 

of the operators I/~-~ll. we rewrite these sums in the terminology of 

(5.1/2). The symmetry species occurring in these formulae are all total- 

ly symmetric, i.e. a=e=c=l: 

• l r - o z l  (8 .11 )  v o = ~ f ( 'O7 .~ (~ Io l l )  + ~ - I  
Since the improper two-centre integrals of the entire molecular po- 

tential trace back to the three-centre nuclear-attraction integrals, 

we now can expresses the BRMs of the molecular potential V, or ratherof 

the partial sums V 0 by the TRMs. Because of (8.11)# the matrix elements 
are 

<Ai~ aam IVo IBk~bbq> = ~zT~(~ 1 I cll) ~i~aam I i~-~ 1 ! -I IBk~bbq> 
and further with (8.8): 

<Ai~aamIV 0 IBk~bb ~ = ~-- S~r(A~aan Cr-illB~bb)ITc~ Z(~)Z (-ABS) Z(C)' 
cyc 

, ikrX<m q (jrl)(Aj-~?cn)(Ol.Oll) 
@ 

Reshaping (7.25)#the sum for j and 1 is found to be 

~ 2,ASC, (CY 0 )(~rlS~cn)+ (8.i3) t jrlJ (Aj IA?cn)(~zloll) = dimc_i[Pis 2~ A c+IS O 

If we now insert (8.13) into (8.12) and then introduce the result into 

(4.10)#we finally get the intended relationship: 

= ~ (8.14) (A~aallVollB~bb)~ c ~(A~aall Or'liiB%b)~,cVZ(A; Z(O)"PIs~ ~ c+l 

This shows that all the TRMs, the orbitals of which adjoin to the edges 

of type S, contribute to the BRMs belonging to type S. The geometric 

relationship is mediated by a polyhedral isoscalar of the second kind, 
which is relatively simple: 

PIs ~ : (il~Z(O)dimd) 2 fASO~(~ji~ycq)(S~eqlSr ) 
c+i ~ Jrl j 

Introducing (8.14) into (5.13) allows to express all matrix elements 

of the potential V C with respect to the s.-a. MOs by the TRMs. Since 

this relationship is often needed, we integrate it by a geometrical 
factor: 
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<(Ace,~aa)ycIIVci[(B~f,~bb)Sc ~ = ZGEO2(x,y,z).(A~a~iCr-illB~bb)Lk (8.16) 
Z 

with the collective indices x=(Aa,Bb,C), y=(¢e,~f, ySc) and z=(~k,~). 

The geometrical factor is given by. ~ 

GE02(x,y,z) = ~ Z(#~)Z( C)dimc'-S~o ~ Z(-ABS)/dimk'~b t {c+fbS~ feb+k~ 
(e f+k+) /-A B ~)Pis2(A S C) (8.17) 

• Ib+a+c+~,5G~ PIs I e+~ ~ o+ 
L ~i {ef kkl 

The double sum for S and o connecting the two polyhedral Isoscalars re- 

sults from the decomposition (7.17) and represents the higher polyhedral 

isoscalar related to (7.7): 

g = ¢ ~ .PIs 2 (8.18) PIs 
e+i f ~ e+f ~ ~ k+i 

• AACB -~ -~ r) 

If this isoscalar is introduced, the geometrical factor takes the form: 

GE02 (x , y, z ) = VZ (A)Z (C)D dimc/dimk Ib~c +fb 5t.~ eb~k~7 

e÷i f 
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9. Symmetry-adapted ~eminals and densities 

Preparatory to the discussion of the two-particle integrals,we ex- 

plain the composition of two-particle functions and one-particle den- 

sities. The starting point are the atomic orbitals (4.1/3). The usual 

proceeding is as follows: forming the s.-a. LCAOs according to (5.1/2) 

and coupling two of these MOs yielding the s.-a. geminals: 

[ (Ae e, ~a a) y c, (By f, ~b b) 8 d] ~gr~ 
(9.~) 

= ~.~(~+~+~)~I (A~e,~aa)rc~ • I (3~f,~bb) 8d ~ 

For sake of clarity~we repeat this equation omitting the multiplicity 

indices and readily inserting (5.1) into (9.1): 

[(As, a)c, (Bf, b)d] gr~ 
(9.2) c+d + = ~g~r~.~(p q g).K(cp,Aie,am).K(dq,Bjf,bn). ~Aiam>. IBjbn> 

Another possible construction of symmetric geminals in the spirit 
of valence bond theory is as follows: We directly couple the product 

of the two AOs and size them according to the distance vectors between 
their atomic centres: 

I [A,B]Sk, [~aa, ~bb~ ~ht> 
(9.3) 

=~h~ Z (-ABS)dim~.~ (-~j S) (ma+b+h) p • I Ai~aam >. IBJ~bbn> 
J 

One now notices that these two-centre or edge geminals transform accor- 

ding to the direct product representation ~Sx h. The final symmetry- 

adaption then is achieved by 

I( [A,B~ S~s, [~aa,~bb] ~h)~gr~=~K(~gr, Sk~s,ht) I [A,B] Sk, [~aa, ~bb] ~ht~ (9"4) 

This construction was already m@ntioned in [i~, eq.(39). But also in 

the preceeding sections 4 and 81(9.3/4 ) is implicitly contained with 

the difference that not orbitals of two different particles were coup- 
led yielding a s.-a. geminal but the bra and ket orbitals of one par- 

ticle yielding a s.-a. density. Hence the derivation of (4.4/6) and 

(8.1) can be achieved in analogy to (9.3/4) by forming consecutively 
the one-particle densities: 

[~(Ai~aa+,BJ~bb)~ht ] = ~i-~.~(m a b+h~. n t ~ (A I~)(FI n~ i~aam BJ~bb - (9.5) 

[~ [A, B] Sk, [~aa+~b b] ~ht] -ABS -~ . + = ~Z~-A~( ijk)'[~l(A~aa ,Ba~bb)~ht ~ (9.6) 

and finally the s.-a. density: 

[~([A,B]S~s, [~aa+,~bb~h)~gr) = 
(9.7) 

= ~K(~gr, Sk~s,ht). ~I [A,B] Sk, [~aa+'~bb1~ht] 

The square brackets on the left-hand side are justified by the relation- 
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ship to the integrals (11.1 and 7). In the case of (4.4/6)~ subsequent- 

ly~the density and the tensor operator have to be coupled. Then follows 

the integration with respect to r*. The s.-a. density also occurs in the 

two-particle integrals. 

Both types of geminals (9.1 and 2) must be related by a unitary 

transformation, since only the order of different couplings has been 

interchanged. The transformation does not depend on the special type 

of orbitals, i.e. the quantum numbers ~a and ~b' and not on the compo- 

nent r. We then have to calculate the coefficients of the expansion 

I ( [~-, BJ Sos, [~a a, ~bb~ ~h) ~gr> 

= ~e~vc ~<[(Aee,a)yc,(B~f,b)6d]~gl([A,B]S~s, [a,bJ~h)~g > (9.8) 

• I ~(AEe,~aa)?c ~ (B~f, ~bb) 6d~gr> 

If we use orthonormalized atomic orbitals like 6-functions the coeffi- 

cients are the overlap integrals of the geminals (9.1 and 4). Because 

of <Ai~aamlBk~bbn ~ = 6(A,B)6(i,k)6(a,b)6(m,n)! we get: 

<[(Aee,a)~o,(B~f,b)6d]~gl([A,B]Sos, [a,.b]~h)~g> . . . . . .  +~+ , 
I-A ~ ~| I C a g+|= 

= ~Z(LABS)dimh.dimc.dimd.~PIs I ~+~+~ .~e f s+~ (9.9) 
~ e f sl~ Lab h J~ 

y6~ 

The same transformation applies to the densitiesland theorem (5.5) 

is the result of this recoupling. The geometrical factor (5.7) is equal 

to (9.9) except for a different normalization and phase. 
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10. Pseudo-tetrahedral coefficients 

We now treat the pseudo-tetrahedra with numbered vertices just as 

the oriented triangles in section 7. The principles have been lined out 

there. 

If ~ is the symbol of a set of equivalent pseudo-tetrahedra~i, then 

the eqs.(7.1 to 6) apply with the substitution of ~for A (and ~ for B 

respectively). We therefore do not repeat them here. We shall term the 

coefficients of the quadrocentric linear combinations QSALC coeffici- 

ents, (~i~ sap). Quadrocentric linear combinations are s.-a. linear 

combinations of quadrocentric "objects", especially four'centre inte- 

grals. We use the mixtum compositum quadrocentr~c instead of tetracen- 

tric, because the letter T has already been used as an abbreviation of 

tricentric. 

The relaticnship between the tetrahedra and the vertices is again ex- 

pressed by a topological matrix: 

,~ABCD~ { I / ~  if ~j, ~k' ~l' ~m in this order are the 
= vertices of~ i. (I0.I) 

~kijklmJ 0 otherwise 

Where Z(~) is the number of equivalent tetrahedra in the set ~. And 

associate a vector ~i to each pseudo-tetrahedron~ i by againp we 

r YABCD ~. ~i= ~-~'j~mT'ijklm" (~I~J+~2~+P3~I+PCD'~m)J (10.2) 
and consequently have 

(~il~aP) = (R-'ilR~ap) ' (10.3) 

which is used to calculate the QSALC coefficients. For details cf. sec- 

tion 7. 

Again functions of four centres, F(~,~,~l,~m) , are regarded as 

functions of the pseudc-tetrahedra, 

.r'n-n,.~-.~--- ,~ABOD, 
F(~ i )  = ,~k~) ~ m X [ i j k l m ) ' F ( ~ j , ~ , ~ l , E )  , (10.4) 

and can be expanded in QSALC coefficients: 

F(~ i) = (~i~F) = ~-(~iI~ap)(~aplF) (10.5) 
~a 

with 
: h )  IF), 

The topological matrices (10.1) have the orthogonality relations: 

YABCD 8(Y,~)8(i,n)/Z(~) (10.7) ~m~(ijklm)~ ~ABCD~ = ~nJklm ~ 

~Z .... ~ABOD..~ABOD. 
k~)T£ijklm)X£irst u) = 6(j,r)8(k,s)8(1,t)6(m,u) (10.8) 

Again we can reduce the topological matrix (10.1) by a factorization. 

For this purposetwe characterize the pseudo-tetrahedra by two opposite 
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edge vectors, which link the vertices I and 5, and 2 and 4 respective- 
ly. This relationship is expressed by: 

@ t~ST~ I I/~ if ~k links the vertices I and 2, and T~l links 
= the vertices 2 and 4. (10.9) 

~iklJ 0 otherwise 
% 

The factorization then is given by: 

~ (~ABCD~ (~ST~ I -ACS f-BDT~ 
~ijklm' = ~ T~ @" st ~" Z(-ACS)~( jls)~Z(-BDT)'T~ kmt j (lO.iO) 

The topological matrix ~3 now is treated just as 2 in section 7. The 
orthogonality relations are: 

s~3,YST, 3,~ST, tist)~ fist) = 8(f,q) 6(i,j)/Z(~) (I0.11) 

~ist )~ (ipq) = ~ Z(~)~3,~ST, 3 fST 6(s,p)6(t,q) (I0.i2) 

The transformetion into the s.-a. basis yields,'. 

l~S~l 
= (ist) (ri I[~ax) (Tt~T~oz) ~bcl ~' (SslS~by) (10.13) 

~xyz / 

with the subsequent factorization 

~abc~ ~ ~abcle-xyz- ' (IO.14) 
~xyz / 

where the "polyhedral isoscalar of the third kind" is given by: 

II~STI [ST z abc e* 
Pls3 |~°~I abc I~= ~3 (ist)(% l~ax)(~s~S~by)(~t IT~c ) (xyz) (10.15) 

From (I0.11/12)! one derives the orthogonality relations: 

I~STI ~ I~ST / 
7- F--~Zs' I=o~1 ?zs'/0o~ / = 6 ( ~ , ~ ) 6 ( e , 6  )d ima /z (~ ' )  (10.16) 

To6 ~abcl 8 ~abcls 

IrSTl* F STI 
~-Z(~)PIs ~ ~o~ PIs 3 |~0~ = 6(o,~)6(b,b)8(~,~)6(c,c)6(e,D).dima (IO.17) 
~ ~abc/~ ~abcl~ 
Without the factorization (I0.I0)/a rather complex polyhedral isoscalar 

results from (I0.I): 

~ ' A ~  I ~_ ~., ~ ,  ~ b 
Pb ) 

~tabcdl~e~f~ q~'fj~ "qijkl' 
_~ + + ---* ..... me.dimf,a c e,~,f b d,~t e ~)f~ (10.18) 

.k0klCyOPc,[D~iD6dp~)~ l t l ~ ,  L~ ~ ~) k~ ~ ~) L~ 
~ ~a~c~e ~f~b~d ~t~e~f 

The subsequent application of (Io.~0) splits up this coefficient as 

follows: 
I~'ABODI '. /-ACS I I-BDT i / rST I 

~Ts/~eP~l =~----~Z(-AOS)Z(-~T) ~Ts / ~ ' ~  ~s l  p~J ~ s ~ / ~ ' l  (lo.19) 
~ t a b c d l s e e f #  S - ~ '  ~ ace is / bd f~e  | t e l  I~ 
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II. Two-particle interaction 

ll,i, The four-centre integrals 

The interaction of the molecular electrons is, except for relati- 

vistic effects, represented by the scalar operator I/ri2 , which in ge- 

neral yields four-centre integrals over the atomic orbitals. As now 

can be fereseen~these integrals can be expanded in QSALC coefficients 

according to (I0.5). 

With respect to the four erbitals there are different coupling modes. 

Either the orbitals in the bra and in the ket are coupled separately 

yielding two-centre geminals~or the orbitals referring to the same par- 

ticle are coupled resulting in two s.-a. densities. Whereas the first 

coupling mode takes into account the separation of the interaction ac- 

cording to electron pairs, the second mode is more capable for the cal- 

culation of the integrals. This aspectlbeing more important in the pre- 

sent contex~ is accentuated by passing over to the notation usual in 

quantum chemistry (cf.[35, 36]): 

i b + (I!.i) 
~i~aam,BJ~bbnlr~Ck~ccp,Dl~ddq~=[Ai~aa+m,Ck~ccp~r[2~BJ~ b n,Dl~ddq] 

Since the square brackets are defined without complex conjugationlthe 

conjugated representations a + and b + show up explicitly. 

Using the two-centre densities (9.5~ the integrals (ll.i) are redu- 

ced to 

[Ai~aa+m, Ck~ecp~r~!BJ~bb+n,Dl~ddqJ (11.2) 

=Ee~~aa~O~cC)~erlr~I(BJ~bb~Dl~d d)~fsJ~dime "Glmltma+Cp r-e}e(f+b+d)~-s n q" 

Note that#in contrast to the one-centre integrals of scalar operators! 

the representations e and f may be different. 

The integrals of the rlght-hand side now are further reduced by the 

factorization theorem: 

[(Ai~aa~Ok@cC)~erlr[~I(BJ~bb+,Dl~dd)~fs] (ll.3) 

~ABCD ' a + b r "i b + ~ e÷f + 

By this relation~the quadrocentric, reduced matrix elements, QRM, are 

defined. They give the following informations: A QRM belongs to a set 

of tetrahedra, the representation of which is reduced to g (multipli- 

city • ) by symmetry-adaption I the two-centre densities are coupled 

yielding the representations e (multiplicity ~) and f (multiplicity ~)I 

finally the coupling of e and f has to yield representation g again 

(with multiplicity ~). 

The proof is as for (4.4/6) or (8.1). Omitting the multiplicities 

again accentuates the essential structure: 
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~Aia+m, Ckcp ~r~ 21Bjb+n, Dld qS (11.4) 

= + + (f+b+d) e~[(Aia+'Ckc)erlr~i2!(Bjb 'Dld)fsSVdime'dimf(a p re)'s n q- 

and 

[(Aia+, Ckc)er Ir~2 ~ (Bib+, Dld) fs] (11.5) 
+ 

~fBOD + r-1,[Bb + Dd~.W ,e+f g)(41~gu) 
= ~ ( t i j k l ) ~ [ ( A a  ,co)ell 12"' ' 'ZJrg<r s 

T g  
The sums for ~ and t contain one non-zero summand only, since they sort 
out the right pseudo-tetrahedron. Only that for g (and u) is a true sum. 

ll.2. The matrix elements of the s.-a. molecular orbitals and geminals 
The next aim is the calculation of the matrix elements of the ope- 

rater I/r12 with respect to the s.-a. LCAO-MOs (5.1) and the geminals 

(9.1). 
Since now four centres are involved, we need a more economical and 

compact notation to manage all the quantum numbers. We rewrite (5.1) 
as follows: 

l~aPa> = l(A~,~a)~aPa> = ~ K(~aPa,Ai~,ama). ~Ai~ama> (11.6) 
im a 

The letters a and ~ always point to the centres of set A (b and ~ to 

B respectively). ~ is a collective index for (A~,~a)~. We further in- 

troduce ~+=(A~ +, ~a +) ~. 

As for the integrals (11.1)i there are two possible notations of the 
integrals of the MOs (11.6): 

~aPa, ~Pb Ir~i I ~CPc, ~Pd~ = ~+a+Pa, ~CPc I r~ ~ ~+~+pb, ~pd] (11.7) 

Consequentlylthere are two types of reduced matrix elements. In the 
particle-couplingtthe application of the WET yields: 

• <~aPa,~6Pb I r ~ l  CaPc,~Pd> 
= 2Q 12 "~" ~" \.dim ,a b s,o,s c ~,~ --'(X~,~)osllr-hl .+.+ +- (~1.s) 

o~s ~a~b~s ~s~c~d 

and in the density coupling: 

~aPa,~b~b Ir  t aPc,  pd > (11.9) 

~[(~+a+ ~8)~t Ur;1211 (~+$+, ~) ~t]. --mt ,a+~ t,~, t+~+~,~ = am ~p ~ pJ k~ p pJ 
a~c t ~a c t 

Both types of reduced matrix elements are interrelated by 6j symbols 

(of. [IV]) : 
< ( ~ , ~ )  osllr~ II (¢~,~)  ~s> (11.1o) 

= ~ ~. o{~s+~{$+~t~}dimt "~ (~+$+,~)~t] 

The reduced matrix elements in the particle coupling are also imme- 
diately related to the integrals of the s.-a. geminals (9.1) now taking 
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• )a. llaPa>" l,$pb~ > ( l i . l i )  
a o s 

The interaction integrals of these geminals are: 

 Sps Iri  t 
= 6(s,s)8(ps,Ps)dims-l<(XA,'6)asllr~i2U(~,~a)~s ) ! 

where the reduced matrix elements on the right are those of eq.(ll.6), 

The reduced matrix elements defined in (11.8/9) now must be traced 

back to the QRMs. Since (II.9) as well as (II.3) are based on the den- 

sity coupling, their interrelation is more direct: 

[( X+a+, ~c )$tllri2 i II( ,+6 +,,~) %t] 
(11.13) 

= ~ ----~----~GE03 (,agT ee~fp, T~g). [(Aca +, OTe )ce,]rll 2 U(B~b+, D6d ) ~og 

The geometrical factor is derived as follows. We invert (II.9): 

[( X + ~+, ~ )~t ,,rll 2 U( ,+6 +.,a) ~t] 
• +. # f-+ ~ • • i _Ii \ (11.14) ~.a c t.~.t b ~'~ ~'a ,b 
~a c~t ~t~b~d 

where the matrix elements of the right-hand side, because of (ll.6) I are 

given by: 

~apa.,6Pblr~IC~Pc,~pd> = T- ~- ~(~aPa,Ai~a,am ~)'K(pbpb,Bjpb,bmb~ 
i jklm x ( ii. i5 ) 

• . d# i l  • K (TOPe , 0kyc, om c). K( ~Pd' DI 6d, dm d) ~i~ama, BJ p bm b i r~2 i Okyomo, DI 8dmdl > 
We now insert (ll.i-3) into (il.15) and the result into (ll.14). These 

substitutions yield the factor: 
= S--- $"-(A+&'t~ ~. t+6+~ ~ ix (...) K(~aPo,~i~a, amof GE03 (¢e~f~'~ag) ~S~l~xq" paPcP ~ ~t~b~d ~ 

.K (pbPb, Bj p#b/bmb ~.K(yoPc, 0kyg, Omc).K ( 8dPd, DI #d~, dmd ) (il.16) 
+ b + + + • m • mr. a c e ¢ d f ~ e f g ~BOD . 

~ ( m a m e r )  (mbmdS) (r s u ) ~ ( q i j k l )  (~ql ~°gu) 
This formula contains nine 3jm symbols, which now are rearranged by a 

two-fold application of the rule of de Shalit (2.54) and the subsequent 

application of (2.4i) : 

GEO3(¢e~f~,~g) = 

= ( Z (~ dimA- dim~. dim~. dim~. dime. dimf) i / 2~-- U ~--- dime ~. dimf ~ 

/ a i d ~ e ~ - ' - l ~ : '  / ' f ' b i d ' + l ( P i ' e  f - -  - -  - - - -  " T _ ~ ,  ~ , ,+ , ,, , p- / t , ,~  
• ~ /a  c e ~ e . ' ( f + b  d } ' ~ p . ~ . ~ - ,  tg+}r l . r (p lp .  ' '  + '  s , a  o e , ~ , f  b d , c p , f  e g , p  |~+6 t J~ b+$+B ] ~  L ~  e ice ~n~rarcr~ e ~rfrbr ~ ~rfreU) (ll.i7) 

-* , . (Ok lOTCrc). (~ iD~#rd ) __ . ~ABOD. • (A i i Ae~ra) • (~j IB~b~rb ) ~ , ,  .x, qijkl) • ( ~qi~agu ) 

The last nine factor~form a scalar being nearly identical with the pc- 
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lyhedral isoscalar (10.18)i 

GE03(se~f#,Y~g ) = (Z(Y)dim~.dim~.dim~.dima.dime.dimf)I/2~ ~ele+t~} 

~z~ (11.18) 
, ~a I c~e 'le' ~flb Id~ fyA B C 

l i + + • + + 
• #efg#~ ~a c e ~¢ ~f b d+~.I~eflg+) II "PIsla ~,~i y18, I 

" [~+.~ t J'~ [t+~+~ J~ ~ ~g a~+c ' d'ldd~/Z~: 

As a result of the discussion in section 9pwe expect that this geome- 

trical factor contains twice a recoupling of the densities according 
to (9,9) or (5.7). This shows up, if we split up the polyhedral isosca- 
lar by (10.19): ~ ~ i ~l / r ~ , 

GE05 (Ee~f#, ~'cg) = ,~a 9 e+~c'~f+b d ~ F.%__ r__ t.._.~ele+tq~{e~g~~t~.d~ [~ c+s] (f~d 1~ 
L~+c t J'~ Lt+$+a j~  

{~t+~, (-A C S I /-B D T I I,STI 

a'+c ' ~ /~ '  / b d ~/,~' ~ ge'~/d 
with the abbreviati on F= VZ (~) Z (-ACS) Z (-BDT) dimA • dim~ • dim6 • dima • dime • dimf' 

The comparison with (5.7) then yields: 

GE03 ( ~ e~f~, ~og) = {~ ] { ~ ~Z(~)dime .dimf. ~~{e~e +t~ ~ ~f~'~ ~ A + ct~ 

(Ii.~o) 

t÷~._,,.,,, P Is  /a~#l .GEO.(x.,y.,zl).GE01(x2,y2,z 2) 
f l e e  f l e e  I'1" 

with the compound arguments: x1=(Aa0ct ), yl=(~a~a,?cyc,~), z1=(ecqS~e ) 

x2=(BbDdt+), y2=(~~l~~,s'd&a,~;),, and ~.2=(fm,~T.~:P'). 
Finally we sum up the results omitting again the multiplicity indi- 

ces. Because the mauy-particle matrix elements of the two-particle in- 

teraction can be traced back to the matrix elements of the s.-a. gemi- 

nals using the coefficients of fractional parentage [27, i7], we start 

with the matrix elements of the geminals. According to (II.i2/i0/i3) 
we have: 

~ ( ~ , ~ )  sll r~ l l  (¢~,;~a) s> (ll.~i) 

= ~ e ~ {  ~" "~ ~ J'{c~s+S{l$~tJdimt'GEO:3(efi~g)•[(Aa+iOc)eUri~il(Bb+iDd)f],~"g 

with 

GE03(ef,~g) = {6~Z (~') dime. dimf'-~ {4e +t)~e~f~I~a+ct~6 +at+9 {~e ~, t~ (11.22) 
.Pis ~ (g~S,~). GE01 ( (AaCct), (~a, c~6), (eSe ;+) ) • GE01 ( (BbDdt+), (~, ~6), (fT~)) 

Later on from a more general point of view it will turn out, that 

the factor GEO 5 is even a triple combination of the factors of type 

GEO I • 
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~2. Complete bases of irreducible representations 

Having delineated the principal structures proper to the symmetric 

polyhedra~we will implement the theory in the following sections by 

details concerning the determination of the newly defined coefficients~ 

or of the invariants BRM, TRM, and QRM from specified approximations 

or ab initio formulae. The starting point is the systematic reconstruc- 

tion of capable, s.-a. basis sets with respect to the centre of symme- 

try. 

!2.~. Generalization of Kopsky !s theorem_ 

All s.-a. functions of the translation group can be factorized as 

~nk(X)=Unk(X)'exp(ikx) ~37~ and those of the rotation group as ~nlm(r~ 

=Rnl(r )-~llm~, where Unk(X ) and Rnl(r ) are scalar functions of the 

respective group. This means that there is one function exp(ikx) or 

one set of functions ~lm~, which, combined with an infinite set of 

scalar functions~ constitutes the complete set of basis functions. 

This suggests the question, wether there is an analogue in the case 

of point groups. Of course, the s.-a. spherical harmonics (3.12) con- 

stitute the complete basis Rnl~ilycp~jand most books on group theory 

are content with it. But this basis is not the wanted one~ since for 

each representation c there are several, moreover infinitely many 

values of 1 and 7. Thus there are required infinitely many sets of 

functions instead of one. The perfect analogue would be one set of 

standard functions ~Ist.ap~. so that _R~a(~)~Ist'ap~ constitutes the 

complete set. It turns out that this perfect analogy exists only for 

the one-dimensional, irreducible representations, whereas for the many- 

dimensional, irreducible representations several, standardized set~ 

~Ist.~ap~ are required, the munber of which is equal to dima, i.e. 

the multiplicity index ~ runs from I to dima. 

Whereas the construction of s.-a. spherical harmonics ~r equivalent- 

ly of. s.-a. homogeneous polynoms in x, y, z is worked o~t in long 

lists of functions ~38~ and is included in most books on group theory, 

the present problem has obviously not attracted much attention. Never- 

theless it turns out that every arbitrary, s.-a. function ~l~ap~ of 

species a can be expanded in a finite number of standard functions. 
dima 

~FI~aP ~ = ~ R~a(~).~Flst.~ap ~ (12.1) 

An exception from this indifference is a late paper of Kcpsky ~39~. 

We learn from it that the problem previously has been passed casually 

~40, 411, although - as Kopsky shows - partly in a misleading manner. 

Since Kopsky~s theorem i, the only one used here, is equivalent to 

eq. (12.1), we take this for granted. But Kcpsky and his predecessors 
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confined themselves to the existence of the linearly independent func- 

tions and the expansion (12.1). They did not show, hew the scalar func- 

tions R~a(~ ) are determined by a given, s.-a. functien~ap~. On the 

contrary Two can provide a system of standardized functions with stron- 

ger properties allowing the inversion of (12.1) and a systematic cal- 

culation of the SALC (including TSALC and QSALC) coefficients. 

We can regard (12.1) as a special case of the expansion (3.16). Be- 

ing unaware about KopskyJs theorem we could prove (12.1) in this way. 

Every position vector ~ together with its rotated images g~makes up 

an equivalent set R={g~wlt~ g~GJ in the sense of section 3. This means 

that the standard functions are proportional to the SALC coefficients 

for general positions (i.e. positions being invarlant to no symmetry 

operation). The normalization is chosen different allowing for continu- 

ity if ~ approaches an element of symmetry. In analogy to (3.17)~we 

use the scalar product 

= 

with respect to the discrete set R in order to orthonormalize the stan- 

dard functions. 

We now compile the properties of the standard functions in the fol- 

lowing theorem: For each irreducible representation a of a point group 

G there is a set of standardized ~unctions ~st.~ap~ having the pro- 

perties: 

i) ~ = i, 2,..., dima. 

2) ~st.~ap~g~>~g~st.~b~ = 8(~,~)8(a,b)8(p,q).#(~a,~) (12.3) 
gcG 

with p(~a,gr~ = p(aa,r~ (12.4) 

and #(~a,r)~ O, where p(~a,~) ~ O if~in general position (12.5) 

3) ~"-~g~Ist.~aP~(~a,~)-i~st.~aplh~ = 8(g,h) (12.6) 

~ap for every ~ in general position. 

4) Every function ~I~ap~ of species a (component p) is representable 

by the expansion dima 
~l~ap~ = ~ R~a(~)~ist.~ap) , (12.7) 

where the scalar functions R~a(~) are defined by~ 

~(~a,~ .R~a(~) = ~--~st. ~aplg~ ~ ~ap~ (12.8) 
g~G 

5) Among other possibilities:the standard functions can be chosen ho- 

mogeneous in x, y, z. But in generalpthe scalar functions are no 

polynomes. 

The proof is based on Kopsky's theorem i. There are precisely dima li- 

nearly independent functions, which we may term ~Inap> (with n=i,..,, 

dima). With respect to the set R=~g~ with g~G~we can express the li- 

near independence by Gramme determinant [42]: 
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detl(maplnap)l~ 01if ~ in general position I 

with (maplnap) = g~maplg~Inap ~. (12.9) 

If we admit points of symmetry like the rank of the determinant 

must decrease because of n(S,a) ~ dima. Thus in general~we have only 

detI(map~nap) l~ O. (12.10) 

We now define the standard functions by the diagonalization of the ma- 

trix Xmn(r)=(map~nap) by a non-singular transformation: 

~ist.~ap~ = dima 
n__~U~n(~)~Inap~ (12.11) 

This yields our statements (12.3 to 5). The zeroes of detIXmn(~)l and 

of its eigenvalues #(~a,r~ prevent us from normalizing the functions 

without destroying the continuity in the whole range of ~. Because of 

Kopsky~s theorem I the functions ~Ina~and therefore the functions 

~Ist.~ap~, too, are complete. The completeness relation is (12.6)Tfrom 

which follows (12.7). Inverting this by (12.3) yields (12.8). 

It is convenient, but not necessary, to choose the standard functions 

as homogeneous polynomes. According to Kopskyls theorem 2~the number 

of independent polynomes is equal to or higher than dima. Hence the 

number of polynomes is sufficient. We can. take them from the lists gi- 

ven in ~38~. A general method for the generation of polynomes is de- 

scribed in ~43]. Furthermore care has to be taken that the transforma- 

tion (12.11) preserves the polynomial property. This is possible for 

instance using Schmidt~s orthegonalization without normalization, i.e. 

without any divisions. Finally the homogeneous polynomes ~st.~ap~ 

and the scalar, homogeneous polynomes #(~a,~) are fixed only up to a 

further transformation of type (12.11). 

12.2. Applications 

We now come to the applicatlons of the theorem. The relation (12.7), 

of course, applies to the s.-a. spherical harmonics (3.19): 
dima 

~l~ap~ = ~ R~(~)~st.yap~ (12.12) 

wlth 
#(ya,~) .R~(~=gG~st. 7apl g~l~ap~= ordG.~Cs ~ L~ ~. yap l~l~ l~ap~ (12.13) 

P 
Thls simplifies many relations containing spherical harmonics, for in- 

stance the determination of the expansion coefficients (3.22). Inser- 

ting (12.12) into (3.22) yleldspbecause of Rl~c~ ~Ta ~ i,=R l~f~-*'Ya~kj: 

dlma l~ -~ 
C(Spa, l~) =~---Rya(Sk).~(Spa, st.y) (12.14) 

T= I 
with an arbitrary Skis and a limited set of standard coefficients: 
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~(S~a, st.y) = ~(S~aPl~i)~ilst.yap > (12.15) 
l 

This reduces the infinite number of coefficients c(S~a,l~) belonging 

to special sets S to a limited number of coefficients defined by (12.15). 
~i~,~, The scalar functions ~ya t ) have to be determined by (12.13). But this 

has to be done only once for each symmetry group and not for all the 

set~ S in each molecular framework. 

In the determination of the SALC coefficientsjan arbitrary, unitary 

transformation (3.23) has been left in obeyance. This problem is posed 

anew for each polyhedral structure and each equivalent set of vectors, 

triangles, or tetrahedra. The choice of a standard basis regulates the 

multiplicity problem in a uniform way for all structures and all equi- 

valent sets within a given symmetry. All SALC coefficients - and there- 

fore all TSALC and QSALO coefficients, too - can be defined via the 

standard functions. 

The proceeding is as follows: Inserting the edge vectors of an equi- 

valent set S into the standard function yields in dima-n(S,a) cases 

<~il S~ap>=O and in n(S,a) cases <~i~S~ap>~O" The latter are necessary 

and sufficient to determine the SALC coefficients and to fix especial- 

ly the index ~: 

(Sr~S~ap) = <Srlst.~ap>~ordG/Z(S)~(~a, Sr) (i2.16) 

Because of the transformation properties of the standard functionsp and 

because of (12.3 to 6)p the relations defining the SALC coefficients in 

section 3 are complied with. By the choice (12.16)t the multiplicity 

indices of all SALC, TSALC, and QSALC coefficients of all molecules 

sharing one symmetry group are fixed. 

By (12.16)! the expansion coefficients (i2.i5) are simplified. Be- 

cause of (12.3)two get: 

~(S~a, st.T) = 6(O,y)~(Oa,~k)Z(S)/ordG ~ (12.17) 

Also the expansion coefficients (3.22) are simplified. Inserting 

(i2.17) into (12.14) yields: 

c(S~a,l~) = R~a(~k)#~(~a,S~lZ(S)/ordd (12.181 

in analogy to the parity of the spherical harmonics, <-~lJm> 

(-1)J~lJm >, we finally define a parity ~a~=+1 of the standard func- 

tions by: 
<-~Ist,map> = {:,a~ ~Ist.~ap> (12.i9) 

From both relations follows: 

R#a(_r ) l ~  -* = ( - i ) lS#a} .R l~ ( r~~  - -  P ~ - -  (12.20) 
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13. Transformation properties and structure of the multi-centre 

integrals 

13.1. General considerations 

The theorems (4.4), (8.1), and (11.2/3) demonstrate that the physical 

informations of the multi-centre integrals are concentrated in the in- 

variants BRM, TRM, and QRM. The theorem are proofs of the existence 

of these invariants without regard to special atomic orbitals. The theo- 

rems (5.5), (8.14), and (ll.13) then show, how these informations enter 

the reduced (and thereby all ordinary) matrix elements of ~he molecular 

orbitals and geminals, i.e. the global molecular invariants. This re- 

lationship is conditioned exclusively by symmetry and geometry. 

The functional type of the atomic orbitals (GTO or STO for instance) 

affects only the values and functional form of the BRM, TRM, and QRM. 

By inversion, as for instance given in (4.10) and (8.7), these can be 

determined in principle from given integral formulae. Since this for- 

mal inversion requires all multi-centre integrals, it makes sense on- 

ly if the integral formulae allow to eliminate the quantum number of 

the individual atomic orbitals, i.e. the components of the representa- 

tions. This especially applies to the magnetic quantum numbers. 

The general structure of the integrals necessary for this purpose 

results from their transformation properties in space. This structure 

is not related to a special molecular symmetry. It requires the inte- 

gral formulae to be tensorial equations with respect to the angular 

momentum algebra [15]. Consequently~we have to start with spherical, 

atomic orbitals 

<~Inlm> = Rnl(r)<~Im>, (13.1) 

where the spherical harmonics are defined by (3.18). And further we 

have to express the multi-centre integrals by rotational invariants, 

3jm symbols of the rotation group 0(3), and spherical harmonics of the 

atamic distances. Since the rotation group is a supergroup of all 

point groups, all the integral formulae can be systematically adapted 

to the special molecular symmetry. Thus without further considerations 

the polycentrlc, reduced matrix elements prove to be composed of the 

following constituents only: i) the rotational invariants, 2) the iso- 

scalar factors resulting from the group chain 0(3) ~ G, 3) the expan- 

sion coefficients (3.22) or (12.i5) resulting from the spherical har- 

monics of the atomic distances, and 4) the nJ symbols of the concerned 

groups 0(3) and G. Using atomic spin orbitals we have to refer to 

SU(2) and ~ instead. The rotational invariants again are the only 

carriers of the physical information. They are the only factors de- 

pending on the special, radial functions Rnl(r ). The other constituents 

enter the mediating geometrical factors. 
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We now derive the universal integral theorems for the atomic orbi- 
tals 

<~Analama> = R~al( al~-~l )'<~-~lama> (13.2) 

defined with respect to the angular momentum basis. These theorems re- 
sult from the transformation properties. 

13, 2, Two-centre integrals 

The ~ theorem concerning the two-centre integrals states that these 
integrals over arbitrary, spherical orbitals can be factorized as 
fellows: 

<Analama I TL 1Bnblbmb) (13.3) 
~+ i+~ ~ _~ = j~ 4~(2J+i)"<nalall ABJ'T~Inblp J'~ j+L~m M ~)(~ malV Is~I ~b)<~ sOl_b jm> 

This theorem is the generalization of the Wigner-Eckart theorem. The 

graphical arrangement of the symbols in the generalized, reduced ma- 

trix element shall indicate the coupling of the angular momenta. AB j 

stands for the translation operator. The introduction of the solid har- 
monlc s 

<~Isol Jm>= rJ~Jm> (~3.4) 

ensures the regular behavior for ~=~ [44]. If ~=~, all terms vanish 

except for the ordinary, reduced matrix element of the WET: 

<nalall 0 °, TLI nbl~L = <nalaU TLII nbl ~ ( i 3.5 ) 

The angular momenta, of course, can be coupled in an order different 

from that in (13.3). The invarlants of the other couplings are related 

to those of eq.(13.3) by 6J symbols. But only the symmetric arranF~ment 
of (13.3) yields the simple conjugation relation: 

<nblbU BA j,TLHnal~ J = <nalaH AB j ,T~I nblpJ. (-i) J+J+la+lb (i3.6) 

In order to prove (13.3)pwe form the expression 
+ + 1 + 

= M ~) (maaM' mb) <Analama 1TM 1Bnblbm~" 

It is invariant to translations and therefore a function of the dis- 

tance vector AB only. We further show the transformation property 

with respect to rotations: 
IJ(g -i~) = Z DJ(g)IJ(~) 

m 

Since the spherical harmonics are complete, it follows: 

IJm(A-~)-v A~lJm > 
The invariant factor in this proportlon~ depending on ~ only~ is the 
reduced matrix element. For reasons mentioned aboverit is convenient 
to splltt off the faetor ~AB~ j.--" Converting the result by the orthogo- 

nality relations of the 3jm symbols finally yields (13.3). 
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Examples of (i3.3) concerning the identity, the kinetic energy, and 

the momentum operator (i.e. L=O and i) can be found in ~45, 46]jand 

further integrals of this type with L=O in [47, 48], cf.also (A2.13). 

13.3. Three-centre nuclear attraction integrals 

Thedescription of the three-centre integrals is complicated by the 

following dilemma: The theorem can be formulated in two different ver- 

sions, the more effective of which being at the same time the more dif- 

ficult. Because of the translation invariance~only the internal coor- 

dinates of the concerned triangle can appear; but there remain many 

possibilities o f  choosing distances and internal angles. Furthermore 

different choices may be appropriate to different radial functions, 

GTOs or STOs for instance. 

Since symmetry considerations suggest an equivalent treatment of 

both orbitals, the foolowing reference vectors appear suitable to the 

integral ~Analama Ir~ 1 IBnblbmp: 

a) A--~ and 

b) ~ and P-~ with the weighted mean ~ = (~+~/(a~+C#B) 

The weight factors ~X (in the case of GTOs being related to the orbi- 

tal exponents) may depend on the set X, but not on the individual ato- 

mic orbitaI. Otherwise complications impairing the symmetry considera- 

tions arise in section 15. In the case of individual orbital exponents 

the vectors AC and BC are preferable. 

Since now s~lidharmonics depending on several distances occur, it 

is convenient to introduce the following combinations of solid harmo- 

nics: 

~l,~21sol(Jl,J2)JM~ = ~J+-~(~ ~)~isol jlml~2~sol J2m2 ~ (13.7) 

At firsttwe formulate a weak theorem: Every three-centre integral 

over arbitrary, spherical orbitals has the following structure: 

~Analam a ~r~ 1 ~ Bnblbm ~ 
+ + _~ (13.8) 

= POtsol(Jj) M  

The theorem is weak, because nothing is said about the range of the 

summations - except for the triangular conditions for the angular mo- 

menta - and nothing about the dependence of the rotational invariants. 

In general these may depend on all the scalar variables ~I, I~, 

and ~.~. The theorem, of course, applies to any other scalar func- 

tions of r O. 

The formulation using the other reference vectors is given by: 

- -  " -  " ~ Q A n a l a m a l r o i ~ B n b l b m b ~  I ~ L I+I L + --~ " I 
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where the rotational invariants now may be functions of I~l, IB--~I, 

and AC.BC. The theorems (13.8 and 9) can be converted into one another, 

since the invariants are interrelated by 

<An lallAolBolllBnblb>T. (2T,+:t)-I [nln~T, Ii_~ABilOJOjr,]. 2n+l 2n'+l' = 0 A 0-~ 

--" n" " • 8~Ll~" ~LI~'AB2npc2 /WmalallABJ:Pca U Bnblb> r' 
with n ~ = (J+j-l-l)/2 -n and conversely by 

~nalall ABJPc J II Bnbl~L = (2L+1) -I~ [NJnjLII q~ABII OIOIL] • CA I. OB 3~ 

÷ < al a"  OiBol   
with n = (l+~-J-j)/2 -N. In these equations we have used the abbrevia- 

tions OAB=~, ~AB=OAOB/eAB, and ~AB=arctan(aA/OB ). The coefficients 
[n313n414Lll~llnil!n212L] are# except for a different normalization# equal 

to the Moshinsky-Smirnov coefficients of the Talmi transformation. We 

refer to [45], eq.(3.4) and the comprehensive references therein. 

In order to prove (13.8)i we form again: 

L --* + + X~(A~,PC) 1 lbT, m r -i = 7(ma~,bM)<Anala al C iBnblbmb> 
Because of the translational invariance! this is a function of the dis- 

---% 

tances AB and PC only, The rotation property is given by: 

--. 
We therefore can express I~ by the spherical harmonics of AB and PC 

or equivalently by the functions defined in (i3.7). The expansion co- 

efficients must be scalar, i.e. functions of ~I, ~P~I, and ~.PC onlyl 

IML( ~ ~ = ( 4 ~L-~)-Ij~ <Analall ABJPo jll Bnblb>L<~, ~-~ i so I ( j j)LM> 

Converting this equation then yields (i3.8), The proof of (13.9) is 

analogous. The interrelations (13.10/lI) result from the following 

theorem of the solid harmonics defined in (13.7): 

<r~ ' r21s° l ( l i l 2 )LM> = n~3 3n~4 [n313n414LII~IIOIIOI2L](2L+I)'I2n 2n 

4 "r3 3.r4 4.<F3,F41sol(i314)Ta > 
with ~3= ~ICOS~-~2 sln~ and ~4= ~isin~+% cOs~" This relation is a spe- 
cial case of the more general theorem (3.3) in [45]. If we put r I = 
~AB ~ '  r~2 = oABP-~, ~= "eAB' i t  fol lows ~3 = OAA~, ~4 = OBB~ and finally: 

~-~'P-~Is°I(III2)LM~ = n31~n~4#~ [n313n414Lll -~11 OllO1 ~r,] ( 2r+i)':t 

2n.+l- 2n-+l- -i- -I~ 2n- 2n. __~ __~ 
• o~ ~ ~.~B ~ ~ . g ~ - e ~ . ~ o  ~.BC ~'GO,BCIsoI(13I~IT@ 

Inserting this into (13.8) yields (13.9 and I0). The inverse relation 

-" OAA-~ , --~ OBB--~ , and q~=+(PAB" resmlts, if we put rl= r2= 

(i3.1o) 

(13.11) 
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The weak theorem now can be strengthened in two conflicting aspects 

by restricting either the dependence of the invariants or the range of 

the angular momenta J and j (1 and ~ respectively). The strong theorems 

are: 

A) Every three-centre integral of arbitrary, spherical orbitals has 

the structure (13.8/9), where the rotational invariants depend on 

AB and PC (AC and B0) only. This in general causes unlimited sums 

for J and j (1 and ~). 

B) Every three-centre integral of arbitrary, spherical orbitals has 

the structure (13.8/9) with the limitation J+J = la+l b (l+l l = la+lb). 

This in general makes the rotational invariants depending on the 

internal angle, i.e. ~.~ (~.~). 

The structure stated in version B) is preserved by the transformations 

(13.10/11) in contrast to that of version A). 

The integrals of Gauss-type or related orbitals [45-47] occupy a 

special position. With respect to the reference scheme AB-PC the ine- 

quality J+j~ 2na+la+2nb+l b holds for all intergrals• Thus the integrals 

with na=nb=O are covered by both A) and B). 

From the tensor algebraic point of view! the theorem B) has the de- 

finite advantage of representing a finite number of integrals by a fi- 

nite number of invariants, too. Generally in case A)~ the number is in- 

finite. The limited s~mmation in the case of GTOs is of no much profit, 

since the group theoretically irrelevant radial quantum numbers inter- 

fere in the angular momentum algebra. 

On the other hand t explicit formulae of type B) are hard to derive 

(cf. below), whereas those of type A) result quite naturally from or- 

thegonal expansions. For instance the expansion 

~Analama Ir~ 1 IBnblbmb~ 

= ~--~---~An 1 m ICn 1 m~>~Cn 1 m ~r-ilCn ll m ~Cnll m n nI~m a a a, c c o- c c c u c c c c c clBnblbmb~ 
c c c c 

in combination with (13.3) yields (13•9) with the invariants 

~AnalaUACIBC~UBnbl~L = (-i)L+l~+la+lb.~ - .  . ncnc±c~I/(21c+l){lclblalL 1 1 ~ 

• ~nalaU Aolll ncl~l ~nclc U r-~J nclc~nclcH CB~II nbl~ l~ 

A similar proof follows from the addition theorems discussed in [49]: 

- -I +I 2- I+I+T, --~ = ~2(-1) 1 L ~ ( m  m M)~lll~i'~2)<rlllImi>~2~12m2> 
From this relation follows eq.(5.12) of [49] having the same structure 

as (13.8/9) except for different reference vectors. 
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The first proof of B) given in [50] is recursive and thus quits com- 

plicated. The results of [46] now allow a simpler proof for a special, 

complete system of orbitals. Since every orbital can be expanded in 

such a complete system, the theorem B) is valid for all orbital systems 

in the Hilbert space. Since the properties of a special orbital system 

do net matter to the present context, we postpone the proof into the 

appendix 2. 

13.4. The four-centre integrals 

There is an even largervariety of representing the four-centre in- 

teraction integrals. But the principles are the same as for the three- 

centre integrals and we can be brief. We confine the representation of 

the distorted tetrahedra ABCD to the vector triple A0, ~, and PQ with 
2 ~ 2 2 2 

= (~AA+°C~)/(~A+aC) and ~ = (C~B~+a~/(~+~), Since new three vec- 

tors are involved, we extend (13.7) and define: 

<Fi'r2'r31s°l(hJ2)JJ3 M) (13.12) 
JJ -~ 

--~ M m~)<~i'r21s°l(JiJ2)JM>~31s°l J3m~ 

Again we first state,ln a weak theorem thatlthe four-centre integrals 

over arbitrary spherical orbitals pricipally have the following struc- 

ture: 

<Analama, Bnblbmb I r~ ! Cnclcm c, Dndldm~V-4~ _~ (21+i)( 21+i )( 2L;l)' 
LJ~ i 

. [(Anal~, Onclc)lU (ACJ~ BDJa )JpQj3 ll(Bnbl~,Dndld)l,]L (13.15) 

+ + # + I +  + . _ ,  
. i l l  lbl  . .  . (m mCm)Cmbm  ) m' 

C a 

The rotational invariants [...]L are designed in analogy to the QRMs 

in (II.2/3) and the reduced matrix elements in (li.9), cf. also [17] 

eq.(7). In general they are functions of the lengths and the scalar 

products of the vectors A-~, B~, and ~. Of course, the angular momenta 

involved can be coupled in a different order. The proof is analogous 

to that of (13.8/9). 

The strong theorems again result from the following restrictions: 

A) Every four-centre integral over arbitrary, spherical orbitals has 

the structure (13.13), where the rotational invariants depend on 

BD, and PQ only. This in general causes unlimited sums for Ji' AO, 

J2' and J3" 
B) Every four-centreintegral over arbitrary, spherical orbitals has 

the structure (13.13) with the limitation ji+j2+J3~la+lb+lc+l d. 

This in general makes the rotational invariants depending on the 

scalar products AC.BD, AO-PQ, and ~-~. 

Again the GTOs occupy a special position. In the case of this ~ystem~ 
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the formulae of type A) are restricted by ji+j2+j3~ 2na+la+2nb+lb+2n c 

+lc+2nd+ld, cf. E45-47J. Thus the integrals with na=nb=nc=nd=O are 

covered by boththeorems A) and B). 

The proof of A) can be achieved by crthogonal expansions with re- 

spect to the centres P and Q or by the addition theorems already men- 

tioned on page 55. The eq.(5.18) of ~49J corresponds to (13.13) with ether 

ether reference vectors and another coupling of the angular momenta. 

The proof of theorem B) is sketched in appendix 2. 

In the following, we shall regard the rotational invariants as known. 

Examples are given in the appendix 2 and in section 23.3/4. But itmust 

be said that the theory cf the invariante according to the theorem B) 

is still unsatisfactory and requires further investigation. 



58 

14. Multi-centre integrals and molecular symmetry 
14.1, Prelimina~ considerations 

If the symmetry is reduced from the rotation group 0(3) to a mole- 
cular symmetry group G, the WET is valid with respect to both groups 
and the both reduced matrix elements are interrelated by (2.82). We 
repeat this relation for 0(3): 

! 4- . 

With the definition 

l~dPd> : Inl6dPd> : Z<im lll6dpd>. Inlml> (14.2) 
the WET reads in G: 

<~dPd I TLy_c 14ePe>c = Zo <~dll TLyc II ~e> o" " PdPcPe(d + c e)o (14o 3) 

where ~ has the meaning ~=(n16). (2.82) then reads in this case: 
i II+L 

<~d"TLyCU4e>° = <nl"TL"nj>'Isl6+~ eJ)o (14.4) 

Exactly corresponding relations must exist for the structural for- 
mulae of the multi-centre integrals discussed in the preceeding section 
as generalizations of the WET. These relations are needed, if the uni- 
versal integral formulae are introduced into the calculations of sym- 
metric molecules. 

As a preliminary2we prepare the point group analogues of the sphe- 
rical harmonics and their combinations (13.7 and 12). As a consequence 
of section 12, the standard functions <~st.~ap> offer themselves. In 
correspondence to (13.7/12)~we define the standard functions of seve- 
ral variables: 

<r~, ~21 st ° (~la1~2a21 pbPb> 
a+~+ o ~ (14.5) 

= ~di-mb'Z(pbp~ g )P<rl ~st'~lalP1> ~2 ~ st'~2a2P2> 

<~'~2'~51 st" (~lal~2a2) Pb~3a~ycP~ (14.6) 
cba~ -* 

= di~.Z(pcPbP3 ) Y<~, r 2 ~st. (~lal~2a2) pbPb>~ 3 ~st° ~3a3P3 > 

According to (12.12)~the s.-a. solid harmonics can be expanded in 
standard functions: 

Jo ~ ~ <~Isol joap> = ~S~a(r~rlst.~ap> with sJ°a(~) = rJ.R~a~(~) (~4.7) 

The corresponding expansions of the functions (13.7) is: 

-* " b (J J+J+l 
~l'r2~s°l(31~2 )Jr Pb> = ~ (2J+l)/dimbi'~-- ~--Is ~ ~, G~! 

' a:a:I p 
~i°iai ~ ( 14 • 8 ) 

• --~ -~ -~ a 

.sJ~ ~* (~I)S~20z (r2)<rl,r21st. (~lala2 2)~bPb> 
-~4 a~ a2 

and that of the functions (13.12): 
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<~'~2'r~Isol(jlJ2)JJ3L=CPc> • (J J+J+l ( LJ+j+ ) 

= ~-'-a.x~Svb ~(2Z+l)(2J+1)/dimcdimb Is ~ Oa4~aO25] .Is ; ~+aG$ 7 (14.9) 

.sJ, o~ ( ~  ~J2 o2 (~2)sJ~ a~ ( r 3 ) < ~ , r 2 , r 3 1 s t ,  (=Ial~2a2)#b=3a3yCPc > 
~4 a~ ~ 2 a  2 

14.2. The particular integral for=~lae 
Now we are prepared to discuss the multi-centre integrals with re- 

spect to molecular symmetry. In each case there are three steps: The 
formulae of section 13 correspond to (14.1) and it is our task to wri- 
te down the multl-centre analogues of (14.3) and of the interrelation 
(14•4).  

The point groupanalogue of the two-centre integral (13.3) is: 

<A~aaPa ~T~C [ B~bbP ~ 

W - - T - ~ d  "e+c d~'a+d b'8.~'st eePe2 =~e diV~<~aa'IABEe'TLTC'!~bb>8~'~e~c~d ~ ~ ) ~  ~ ~)~a~d~b ~ l " 

and the interrelation of the invariants: 

<~aa[~AB~ewTLTCU~bb>~~-- lec Ij+L J~ /l;J ~b)ss~(~)<nalal, ABJ,TL~nb~$1) 
= ~----~4~(2J+l)/dimd.Is ,o+v ~ / I s / ~  

d~ la+d 
j o ~  Because of the functions See ( ) the point group invariant is no scalar 

of the rotation group. 
The derivation of these equations is as follows• Because of (14.2~ 

the interrelation of the integrals (14.10) and (13.3) is given by: 

<A~aaPa~T~C~B~bbPb> 

= ~a~aPaIlama~MILTcPc>~bmbllb~bmb~<AnalamalT~IBnblbmb> 

Using now (2.72/73) and (14.7) and comparing the result with (14.10) 
we get (14.11). 

The point group analogue of the three-centre integral (13.8) is: 

~aaPalr~lIB~bbPb> 
a 8d ~e c a+b c+e (14.12) 

= ~ ~___~dimc<A~a UAB PC ~IB~bb>~.( ~ ~ ~) <~,P-~Ist.(Sd~e)VCPc > 
eTc6d~ e ~r ~a~b~c , 

and again the interrelation of the invariants: 
1+ + ( J+J+l 2S+I ~s/=a~bL I - L 

<A~aaIIABSdpcqelJB~bb>~7 = 4~Lj0 ~ iS1"~'± la+~ ~+)e Is ~ ~+~+]T (14.13) 

• Jo J~ -'* J j L Ssd(~)S~e(PC)<AnalalIAB PC llBnblb> 

These equations again follow from 

<A~aaPalr~l~B~bbPb> = Z<la~aPallama>dbmbIlb~bPb>@alamalr~lIBnblbmb> 
using the expansion (14.8). 

(I4.1o) 
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With reference to the vectors A~and B-~the corresponding formulae 
read: 

<A~aaPalr~IIB~bbPb > f , a+b + (~f~)yCPc~ 14"14) 

~yc~-~T' ~ ~a~b~c 
with ~+J ll+lbL+ ~ IL l+lJ+ 1 

= • Is ~ ~ Is ~ ~ <A~aa[IAC~fBC~llB~bb>Cy 4~L ~i~'~ la+b c+l~ Ic f+~Iy (14.15) 

i __~ ~l I__, . .i 
• S ~( iO )S~ BO )<An al all AOIBC~I Bn bib> L 

In section 13;we have criticized that the three-centre integral for- 

mulae of type A) can contain infinitely many rotational invariants. 
This problem does not occur in the case of molecular symmetry, since 

the sums in (14.12 and 14) are finite because of the limited number 

of point group representations. But in truth the problem has only been 

shifted, since according to (14.13 and 14) the finite number of point 

group invarlants is expressed by an infinite number of rotational in- 

variants. For type B), of course, this problem does not exist. 
In conclusionlwe carry out the corresponding determination of the 

two-electron integrals. The parallelism of rotation and point group 

yields the analogue of (13.13): 

<A~aaPa,B~bbPb]r~12[C~cCPc,D~ddPd ) = ~ ~ ~dime.dime-dimg' 
~ini~g~eg~l (14.16) 

• [(Ataa+ , CtcC) ~ e II (AC~ h~ BDD2 h2 ) 9fpQ93 h3 II (Btbb+, D~dd) ~leS gx 

t a+c e~st b+d eI~¢te+el+g+~/A-~ ~ ~--~I.+ r 
• ~ ~ ~J ~ ~ ~J ~ ~ ~ \~,~,~l~.~lh1~2h2)~f~3h3~gPg ~ 
2a2c2e 262d2e ~e2e2g 

The point group invariants of thls theorem are related to the rotatio- 

nal invariants by: 

[(A~aa+, C~ec) ~ell (AC~ h~,BD~ h z )~fpQ~h~ U (B~bb+, D~dd) ~d]g ~ 
, , i+i i i I 

- '-~'~ @-- ~'g~l ,dimg I dime- dime'- dimf "'|a +& el¢''|~+ d e';¢ 

+ + 1 + 1÷ + ÷ i i J J,j~ I L L J j~ • __~ • __~ ( 4. 7) 
• ' S .S ~' A~ s j~a BD S ~ IS[~ ~'~l-Is{{+~Y.+]..I [~ ~+~'l.-I] h, ( ) D2 h'( ) 1]~h' (Q) 

• [(Ana l+, Cncl c )III (AC j' BD j2 )JPQJ = II (Bnbl~, Dndld) ~'] L 

Thls results from (13.13) by the adaption to the point group symmetry 

(14.2). One then uses (2.72/73) and the expansion (14.9). 
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15. Ab initio determination of the ~olycentric invariants 

Using the integral formulae of section 13 and their adaption to the 

particular molecular symmetry in section 14, we new candetermine the 

polycentric, reduced matrix elements BRM, TRM, and QRM. 

15.1. The proper two-centre integrals 

Going to calculate we have to rewrite (14.10) for the centres h i 

and 4" Noting that A~--~-~i= -~ik~we get with (12.19): 

<Ai~aaPa ~ Tp!Bk~bbP ~ 

= V- V-~l~ a i s~e T c, ~ b~>d .,e+c d+~.a+d b.8. le./=+ i 
~eZ-J .... \~a J" ~ WbY6~ LpePcP~ LpaPdP~ L ~ ~Q~iklst'aePe> 

Inserting this into (4.10) yields the BRMs expressed by the point 
group invariants = 

(A aa, T%B  
l I ~% c " d (15.1) 

= {c+de~{a+bdS}~l-6~'~(S~e,st.~) {ee~<gaaU-S ,T lJ~bb>8 ~ 

Using now (14.11) yields the final expression by the rotational inva- 
riants of the general two-centre integrals: 

(A~aaIITLTCiiBgbb)dSD e = (_l)la+lb +L~-~-!~(See,st.~)V4~(2J+l),.Sjto(~_ ~ 
j~ ~q ~e r" 

/J*J~l /lalbJ 1 . . ~ ~J (15.2) 
• Is I o + ~ j I  I s / ¢ ~  "~1 <n~loll-SJ,T~lln~.l~.) 

~e d~c/'q lamb d/6 . . . .  
This completes the ab inition calculation of the two-centre matrix 

elements. In the next step2the matrix elements of the s.-a. MOs (5,1) 

or (11.6) can be expressed directly by the rotational invariants. The 
abbreviation ~ now includes the main and the angular momentum quantum 
numbers, i.e. ~ (A~'~,~aa)& '~ " = = (Aaa,nala~a)u. The s.-a. MOs are: 

~aPa> = ~ K(&aPa, Ai~a, aqa ) • IAi~aaqa > 
zq a 

= Z~qam~aK (~aPa, Ai~a~, aqa)<lama Ila~aq~" ~ Ainalama> (15.3) 

• . ~ . I Alnalama> = ~ M(~aPa,Ai~a, (~a)lam a) 
im a 

The coefficients M(...) relating the s.-a. MOs directly to the spheri- 

cal AOs have been defined in [51], eq.(7). From the orthogonality re- 

lations (2.26/27), (2.70/71), and (3.6/7) follow those of the composed 
coefficients M: 

~m ( &Apa' Ai~a~' (~a) im) -M( ~$Pb' Ai~, (~b) Im) (~5,4) 

= 6(&, ~) 6(&,6) 6(Pa, pb) 6(~, ~') 8(a',b') 6(~, ~) 6(a,b ) 

~--M(&&Pa, Ai~a ~ , "" ,, (~a)im)'M(~aPa,AJ~a,(=a)In) = 6(i,j)6(m,n) (15.5) 
14 e .  ~a~a~ap a 
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The matrix elements of the MOs (15.3) thus are given by the WET 

<XaPa~T~C l~6Pb> = Z~a[ITLyC[I~6>~. (a+C.paPcP~ (15.6) 

with the reduced matrix elements 

~al]TLyClI~)~ = ~s(nal~I-SJ,T~Inbl~J'GEO4(Xa,~,Lyc~,JjS) (15.7) 
and the geometrical factor: 

GEO4(X[,~6,Lyc~,JjS) = (-1)la+IbL.~4~(2J+i).~e~, ~(See,st.~) 

/l l.j  , , , .  (15.a) 
• S~(]r) ' Is /o+~+yI Is/~+pu~l GEO.(AaBbc,¢a:ap~0$~,d6,S:e) 

%e d c]D [ab dis 

The paper [51] dealt with the overlap matrix, i.e. the matrix ele- 
ments of the identity operator, a special case of (15.6-8). 

15.2. The nuclear attraction integrals 
For the determination of the TRMs~we have to repeat (14.12 or 14) 

with respect to the centres A-L, ~., and O'~. This yields an invariant 

<A~aa[ I Ai~dPikC~ eu B~bb> ~.~wi~th ~i~A~i + o ~ ) ~  ~ /(~A+~). Because of the 
invariance the vectors AiB k and PikOl can be replaced by those of an 

bitrary, equiva AxB v" lent triangle and P~--~-~z" In order to mr eliminate 
the misleading indices ikl (or xyz5 we rep-lace them by AB--~a and P-~a, 
where the index ~ indicates the set of the triangles under considera- 
tion. Inserting now the specified relation (14.12) into (8.7) then 

yields: 
(A~aall Or'lll B~bb)~ yc = ~ 5"<A~oall AB~dpc~ e U B~b> c ," 5~ (A yc, st. 8d~e~) 

y6dD e ~ ~ :y 1 (15.9) 
with the expansion coefficients: 

= ~ ( j i l k ) ~ , P i k C l l S  .(Sdne)ycn> 51(Aye, st. 6d,ef) ~(A¥onlaj) " AACB ---* t (15.10) 
These coefficients result from the expansion 

~ 6d e ~ACB <AiBk,PikOllst.(6d~e)ycn > = Z~(~ye,st. D Y)~-~(jilk)(Aj~Byc~5.11 ) 

and are the analogues of (12.15). 
On the other handtthe insertion of (14.14) into (8.7) yields: 

(A~aallOr'l H B~bb)~yc = ~di-~%A~aaH AO~AfBo~filB~bb>~ ~. c~ (~ yc, st. ~fii~' ! I2) 

with a different type of coefficients: 

j ) V - ~  ( j ilk) <AiOl, ~---~i I st. (~f~f5 yc~5.13 ) 
The eqs.(15.9 and 12) show that different types of coefficients have 

to be calculated depending on the reference vectors in the integral 
formulae. Therefore it is absolutely inexpedient to allow the parame- 

ters o A and o B in the weighted mean Pik to depend on the individual 
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orbitals at a certain centre. Problems also arise, if approximative 

formulae require other reference vectors. 

Inserting now (14.13) into (15.9) and (14.15) into (15.12) traces 
back the TRMs to the rotational invariants. With respect to the refe- 

rence vectors AC and the result is: 

(A~aallCr-iU B~bb)~ yc 
(i5.i4) 

= ~GE05 (A1 a~a, Blb~b , CAyc~,l~L)' <AnalaIIACIBcA~, Bnbl~L 

with the geometrical factor: 

GEO5(Ala~a,BlbPb, C~yc~,l~L) = 4~( 2L+i)dimc-I/2G~/~(A yc, st.~f~f~ 

ll:lb:'+l I" l+l'+l (:~.i."~) 
• Is::÷ e :slx l. :. 

c I ~  I 

Finally the matrix elements of the potential operator (8.10/11) with 

respect to the s.-a. MOs can be determined: 

(XapalVcl~:pa)> = ~ : l l v c l l ~ : ) / ~ : ' ~  , (15.16) 

with 

G;06 (X~C, llL ~) = 7--G~O# Ala~a, BlbPb , C ~ c~, lf~.) 
yc¢ t l  I , . ,  .. .GE02_ AaBbC, ~a,  ,¢zpa,Aycs_ ( ~ ) (15.17) 

15.3. The interaction integrals 
the same way as befer%we restate (14.16) for the centres ~i' In 

:~, :, and ~l" The resulting integral is equal to (11.1-3) and the 

isolation of the QRM give the expression in terms of the point group 
__~ __~ ___~. 

invariants. Again we introduce_~ the vectors A~, BD~, and PQ~ instead 
of A~k , B-~, and PikQ~l ) referring to an arbitrary member of the 
set~. The QRMs are: 

[( A~aa+ , C~e c) ¢ ell ri: U(B~bb +, D~dd) cle2 ~g = 

. fi'iA, iaa+,"r'D, c c)¢e I[ ( A0~ ~h' ,BD~ 2h2 )'fPQ~3 h3,, (B, bb+, I~dd) ~'el] g,: 

where the expansion coefficients are given by: 

~ (y~g, st. ( nlhl ~ zh 2 ) ~Z~ ~h3~) ( 15. Ig ) 

These again are obvious generalizations of the coefficients (i5.10/13) 
and (12.15). They likewise depend on the system of reference vectors 
within the pseudo-tetrahedra. 

Inserting now (15.18) into (14.17) traces back the QRMs to the to- 
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tational invariants : 

[(A~aa+, C~C c) ¢ e Ur~i2 1 (B~bb+, D~dd) sle~ g (15.20) 

(A~aaC~C c~ e, B~bbD~dd~e, ~ ~g~ jiJ(ll)L) = ~-- ~GE07 la ~, I 

Ji J 
• [(Anala, Cnclc) l~ (AC#~ B~ ) JPQ ~ ,,(Bnblb, Dndld)l ~ + L 

with the geometrical factor: 
,4 ~ 3/2,, 2L+I~ "dim "~--- ~--- r(21+I) (211+i) (2J+t)] I/2 

GE07(...) = ~ ) <~ )/ g)# . 2,_~[ dime ~dimel. dimf J (15.21) 

1 1 1 + i b+l 1 l J J+'+' '!+If+L+' IL 
rL,~.l Is| +~ y | I f+h~l~ / ~i~ y-~J la+c ele Ib+d e'le i ~f ~h~I~ le e@g+IG yg, J+J:l 

• 5' ' . J+ ~+ (A-~)~J~ =~ r~--~ ~sJ3~,rg-~. (~g,st'(nlhln2h2)~fo3h3 ~) Sn+h~ ~Dzhz'~J ~' D~h~ ~ ~ 

And finally, we determine the two-electron matrix elements of the 
s.-a. LCA0-MOs. From (11.13) and (15.20) results: 

[(~+A +, Z6) etllr[~ U (9+6+, 9~) e~t] = 7-- 7--~Eo 8 (A&Z6e, 95~e%, J i J (if) L 
• + J iJl~'L~ 

• [(anala' Oncl c)l" (A~4 BD~Z )JPQJ' II (Bnbl+b' Imdld)1] L(15.22) 
with the geometrical factor: 
GEO 8 (~¢6e, ~gaet ~ j i J (ll') L ~9 ( 15.25) 

= ~ e~e~gGE05 (e ~ ~,~g) • GE07 (A~aaC~cCe e, B~bbD~dd~e~, ~g ~ jiJ (lf)T.) 
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16. Wolfsber~-Helmholtz and Mulliken approximations 

Having cleared up the interrelation between the molecular invariants 

defined in the first sections and the ab initio rotational invariantsp 

we now consider approximations llke those of Welfsberg-He]mBoltz and 

Mulliken. These approximations can be discussed from three different, 

but connected points of view: namelY as approximative formulae for dis- 

tant centres, as a minimization of the number of semi-empirical para- 

meters, and as an interpretational aid to split up the molecular ener- 

gy into a quasi-classic part and the "remainder" [52]. 

At first;it is a trivial r#quirement, that an approximation or para- 

metrization should not depend on the position and orientation of the 

molecule in space, i.e. that it should be invarlant to translations 

and rotations. This applies in particular to the symmetry operations 

of the molecule. But the existence of a relevant literature suggests, 

that this trivial requirement is by no means a matter of fact [53-55]. 

The required invariauce is self-evident, if the approximations are 

sujected to the principles of form stated in section 13, if especially 

both sides of the approximative formulae are tensors of the same spe- 

cies. This condition is not met by the usual form of the Wolfsberg- 

Helmholtz approximation: 

<Analamalr~ilBnblbmb> 

= k ~nalama ~ Bnblbm~nal area ~r~ i ~Bn al am~+ <Bnblbm b Ir~ I I Bnblbm~] 

The left side and both summan~on the right transform according to three 

different product representations of the rotation group. This demands 

a meaningful modification, which for instance can be achieved by taking 

the mean with respect to the magnetic quantum numbers. There are two 

possibilities: 

<Analama Ir~ 1 ~ Bnblbmb > = ~'~nal ama I Bnblbmb~nblbm ~ Ir~ 1 IBnblbm ~ 

(16.1) 
k . An 1 m I Bn 1 m dan 1 m r I an 1 m I + ~T"ITZ~ a a al b b ~ a a a~ ~ I a a ~ a ? m a 

or 

@alamalr~i~Bnblbmb> k<Analama~Bnblbm~ (16.2) 

" [~'~<Analama I r~i I Analama) + 2~" Z<Bnblbmb ~ r~l ~ Bnblbmb~ ] 
a o m b 

The first approximation depends on the angles between the vectors 

and AC or B0 respectively. The second one is simpler and leads to a 

smaller number of parameters. Furthermore it fits with the reference 

vectors AB-PC and we can use the coefficients (i5.10). We therefore 

prefer (~6.2) and determine the corresponding approximation of the 

rotational invariants, From (13.8) follows: 
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Z <Analama I rOt I Analama> O°AC°"Anala> ° 
ma = ~ "  <nal~i nala> 

with the ordinary, reduced matrix element of (15.5)• If we insert this 

into (16.2) and compare the result with (15.8), we get: 

<Anala[IABJPcJlIBnbI~L = 6(J'0)6(J'L)<nalallABLIlnbl~L(-i)L+la+Ib (16.3) 

"[ I/~-+T<nalalInal ~ + l~<nblbllnbl~] 

The approximation with respect to the angular momentum basis is the 

most efficient and selfconsistent. But a similar approximation is pos- 

sible on the lower level of the point group invariants (section 14) or 

even on the level of the TILEs. The latter presents itself, if the para- 

metrization shall not require spherical, atomic orbitals. Approximating 

(8.1) in the sense of (16•2), 

<Ai@aamlrc~ IBk~bbq> = k <Ai~aamlBk~bbq> 
• 4 ' -I I ~ m - -  [ 1~m~r<Al~aam I rCl I Ai~aam> + 4 ' I , . ( 1 6 • 4 )  r~q,<Bk%bq Ir~ l  IB~%b~}J, 

yields for the TRMs: 
" ~/Z(A)Z(C7 6. 2,A S I '  " 

= 7 6 (A~aallCr-lllBk~bb)~T c k dimc ~(A~aaUB@bb)scc PIs 7 
~Ic+c 1 I (i6.5) 

• ~'-(1/~ Z (XCX) dlmx9 • (x~xxll Or'Ill X~xX) xcxi11, 
Xx 

where the sum takes the values Xx Aa and Bb. ACA and BOB are degene- 

rate triangles. 

The Mulliken approximation of the two-electron integrals can be 

treated in the same way. Again the approximation must be changed into 

a correct tensor equation. From the several possibilities we take the 

simplest one: 

An l+m ,On 1 m Ir ilBn l+m ,Dn 1 m <An 1 m Cn 1 m ><Bn 1 m Dn 1 m [ a a a c c c ~2 b b b d d d] = a a al c c c b b bl d d d> 

• I/4)~.~_(21 I x x x x x x 12 Y ymy Y Y a~f(i6.6 ) ( + l ) ( 2 1 ' v  +l)~--mm [Xn l+m ,XA 1 m I r - l l Y n  1 + ,Yn :l. ~ ]  
xx~y x ~ x y 

where the sums take the values: Xx = Aa, Cc and Yy = Bb,Dd. 

This ansatz together with (13.13) leads to the following approximation 

of the rotational invariants: 

[(Anal+ , Cnclc) l l  I (ACJlBDJ2)JpQJ3~ (Bnbl~,Dndld)~]  T' = 6 ( J l , 1 )  6(J 2' 1') 

• 6(is,O) 6(J, T.) ( - i )  l a + I b + l o + l d + l + f y i / ( 2 1 + i )  ( 21+i)'<nalaliAC~l nolo> I 

• <nblbllBDlU ndld~( i/4)~] i/( 21x+i ) ( 21~+i )' 
(i6. 7 ) 

xxzy o 
+ o o o  o nl + • [(Xnxlx,Xnxlx)OU(O 0 ) AB II(Y y y, Ynyly)0] 

As in (16.3)~most of the invariants (parameters) are put equal to zero• 

Without reference to spherical orbitalsjthe direct approximation of 

the QRMs is as follows. In (ii. 2) we put: 
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[Ai~aa+m, Ok~c cp ~r[~ IB j~bb +n,Dl~ddq]= ~i~aam[ Ck~ ccp> ~J~bbn IDl~dd~ 
( 16.8) 

and get the approxlmative TRMs: 

[( A~a a +,O~c c ) ~eU r[12!i(B~b b +,D~dd ) Df]~g 
o [ S T 

= VZ('ACS)Z(-BDT)Z(A).t^~ ~IIo,. ,,~e .(n~ ~l ln,.  , ~ r l  .~ro3 a (i6.9) 

. (1/4)$----~ l / z  (xy~)dimx.  dimy. i-(X~xX+ X~xX)ill r-~l I . . . _ . _ .  ~ ~ ( y ~yy + , y~ ry l i ] x rxY i  l i  
with Xx = Aa, Cc and Yy = Bb, Dd. XYXY are degenerate tetrahedra and 

thus only two-centre invariants occur, 

At this point a comparison with a LCAO-MO parametrization of tetra- 

hedral transition metal complexes (i.e. a MO extension of the ligand 

field theory) [56] may be of interest. The authors calculate the two- 

electron integrals of linear combinations of s.-a. MOs: 

lyaPa> = cY(~) • i~(aPa> + c¥(~) • i~pa> (16.10) 

where i~&pa > and i~p~are given by (15.3). Set A means the central 

ion and set B the llgands. They have to discuss the delocalized inte- 

grals 
<Tl~pa, y2~PblrTl21~3~pc,~4aPd>. (16.~)  

They do not examine the invariants of these integrals according to 

(li.8/9)#but decompose (~6.11) into one-electron integrals using the 

multipole expansion 

r~l 2 = ~m(4=/21+l)(r~/r}+l)<~l~>~ml~>.  (l~.:l.2) 
Since the delocalized integrals of such radial functions are not cal- 

culable, only bilinear combinations of the can be taken into account 

(tables ll) thus undoing the decomposition. 

The bilinear combinations then are parametrized using a manipulated 

population analysis. Inserting (~6.~0) and (~5.5) into (i6.11) yields 

localized multi-centre integrals, which are subjected to the Mulliken 

approximation. The result is a long llst of separate, numerical coef- 

ficients (table ~i again). In order to preserve the point group inva- 

riance ad hoe average of the approximate integrals have to be taken. 

On the contrary by inserting (16.9) into (li.13)pwe get a general 

construction of such coefficients for arbitrary symmetries. Ad hoc 

averages are not required, not even for orbitals higher than p (cf. 

£54]). 
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17. Floatin~ orbitals 

A possibility of avoiding the algebra of higher angular momenta is 

the exclusive using of s-orbltals floating in space. The invariants 

of the preceedlng sections depending on the higher quantum numbers thus 

are replaced by a multitude of multicentre s-integrals. The task of 

the polycentrlc algebra then is to collect these s-integrals in such 

a way, that each independent integral occurs only once in any molecu- 

lar invariant. 

There are two ways of proceeding: The s-orbitals can be distributed 

freely in space without regard to the atomic positions and then are 

combined to s.-a. MOs. In this case we get high and non-structured mul- 

tiplicities of the induced symmetry species. On the other handtthe s- 

orbitals can be grouped around the atomic positions simulating p-, d- 

etc. orbitals. Only from these simulated AOs the s.-a. MOs or VB func- 

tions are built up. The attachment of the orbitals to the atomic cen- 

tres induces a structure into the multiplicity problem, which is acces- 

sible to the polyhedral algebra. 

To begin withlwe simulate orbitals of the symmetry species a by li- 

near combinations of s-orbitals. For this purpose we use one, two or 

several equivalent positions U 1 as required around thecentre of sym- 

metry. The s-orbitals are localized at these positions: 

< l los> 
is a discriminating index, for instance an orbital exponent. Accor- 

ding to (5.1) the s.-a. orbitals at the centre of symmetry are given 

by: ~float aU~aPa ~ = ~ ~IUl~s~(U llU~apa) (17.2) 

These compound "AOs" now are shifted to the various atomic positions: 

~Ai~aaPa ~= ~-~ilfloat ~U~aPa~ ~ (17.3) 

where now @a=(float ~Ua). 

The invariants of the multi-centre integrals over these shifted or- 

bitals result from the invariants of the integrals over the constitu- 

ting s-orbltals. As an example/we explicate this for the BRMs. We ex- 

press the functions (17,3) directly by the twice shifted s-orbitals: 

~Ai~aaP ~ = ~ ~-~i'~l ~s~(~ 1 IU~ap a) 
, ( 1 7 . 4 )  

~are the positions of the s-orbitals and the topological re- matrix 

lates them to the atomic positions ~i" 

We now come to the two-centre matrix elements of the orbitals (17. 

3/4) where ~b=(float ~ffp): 
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( oaPa i   bPb)(A  s i i '7,5) 
The integrals on the right are a special case of (4.6): 

<Airas JTpc j~sJs) = V~y(~oslJTCHBiJS)vyc.~Z(_A~V)/dimc%~C.r~sV) {V~T l.~.tlvyCPc)(17.6) 

In order to determine the BRMs~we insert this into (17.5) and the re- 

sult into (4.10)I 

c ~B~bb )ssed6O = dlmd~-'--ik~l~grB~V~y~l ~--~Z (-ABS) Z ("A~U) Z (-B~ Z (-~B~)/dime__, ~ i (A~aaUT 

..a b~d~6.d c~e.v. ,-ABS~ ,-~AU~ ,-BBU~ ,-~BV~ 
t~ ~ ~) t~ ~ ~) ~t iku)~t ril)~t ~km ) t rst ) 
~a~b~d ~d~c~e 

--~ ~ ~-~I i b ~ l c i i (17.7) 
• (Seep e iS u) (U~aPaJU l) (UmlU~ pb ) (V t IVyop c) (~s l lm l~s)v~ c 

We now inspect the sums for i, k, r, and s of the four topological ma- 

Beca%se of the triangular relations (3'I)~ these sums do not trices• 

if S u+Ul=U~+Vt or ~l-~m=~t-~u . We decompose this quadran- vanish only 

gular relation into two triangular relations by introducing the egde 

vector Xy=U l- . This edge vector is the distance of two s-orbitals 

before their shift from the centre to the atomic positions• We there- 

fore get the topological relation: 

, ~r • " ~ S  -AeAu -dBU' - ~ v  
~rs ZC-ABS)Z(-eAU)Z(-SB~)Z(-~V) 7( iku)~( ril)X( skm)~( rst ) (17.8) 

,. -UL~X -VSX = ~(-A~U)~(-dBU)T-~Z(-UU~)ZC-VSX) ~( lmy)~( tuyb 
Xy 

where 6(-A~U) = 12 if there are triangles of the type -~AU, and 6(-A~U) 

= 0 otherwise. This relation reminds of the rule of de-Shalit (2.54) 

with a simple, "topological 9J symbol'. We insert (17.8) into (:I.7.7): 

: dimd / .. 
'I' .,. 

C a b ~8~dc e,~ ,c-U~X,.c-VSX, c I~u >) 
"~ ~ ~ ~ ~ ~ "-~ im~z,-~ +~,~Ssep e 
~a~b~ d ~d~c~e ~ .-~ 

c 
• (U~aPa i~l)(~m~bPb)(~t JVyCPc )(A~suT U~ds)v7 c 

To the sums for 1 and m we apply (6.~4) and collect the remainder by 

(6.6)• This yields the intended relationship between the BRMs: 

(A~aallTCllB~bb)ds~Se~ = ~X ~-6(-A~AU) 8 (%~B~)~Z (-U~X) Z (-VSX) Idimc' 
P7 (17.9) 

('~ i ~)~P~sI'~ s x ) + d (~<~sll T C'll~ ~'s) v ' c  • PIe ~ p+ • 
e 

The first polyhedral isoscalar characterizes the topology of the tm. 

shifted s-orbitals at the centre, the second one the relation of the 

atomic distances S to the true distances V of the shifted s-orbitals. 

The BRMs on the right, of course, depend on the distances V, too. Ac- 

cording to (4.10)/the BRMs of the s-orbitals result from a simple sum 
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ef the integrals: 

(A~sll~ IIB~S)vT c 

Pc 
where in the last line the indices of Vik=Ai-~k are arbitrary. 

In the case of scalar operatorstf~llows from (17.9/10): 

(A~aallTUB~bb)~c e =3~-.~-8(-A~UIS(-B~I.gZ(-U~XlZ(-VSXlZ(-~A~V) ~ 
~BVX I-UUXl I-VSXl ~ . 

a~b el8 ~ ~ e e~l 

where Ai-B~must be an edge of the type V. 

By (17.9) the fact is emphasized, that the existence of molecular 

multi-centre invariants is not restricted to the linear combinations 

(17.1o) 

(17.11) 

of spherical atomic orbitals. 
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18. Overlap- and structural matrices I orthonormalization 

The following two sections concern the connection of our new results 

with the conventional treatment of symmetric molecules. As far as the 

MO picture+)is concerned, we can be brief. Only the VB picture +) will 

show again typical multicentre aspects. 

The eonstructingof many-particle functions and their matrix elements 

is simplified in both pictures by a preceeding orthonormalization of 

the one-particle basis. Since the original AOs are not orthogenal, we 

have to turn over to the delecalized, kanenic MOs or to the localized 

L~wdin AOs [57]. Apart from series expansions with respect te non-dia- 

gonal elements~the diagonalization of the overlap matrix of the origi- 

nal AOs is necessary for both methods. By constructing the s,-a. MOs 

(5.1) the group theoretical preparations for the diagonalization are 

done [32]. Because of the orthogenality of the MOs belonging to diffe- 

rent symmetry species and components~there remains only the diagonali- 

zation of the invarlant partial matrices according to: 

a~.u~ (18.1) 

The meaning of the quantum numbers is given by (11.6) and the sum runs 

over all sets of equivalent centres, too. a re~resents all eccuring 
a ~ symmetry species, d~ are the eigenvalues~nd u ~ the compenents of the 

eigenvectors of the matrices. The reduced matrix elements ~ re- 

sult from (15.7), if T is the unit operator. 

The kanonical MOs then are given by~ 

I an'  Pa> = 

-112 ~ .. " IBknblbmb~ = ~b(d~) "u~'M(~aPa,Bk~b,(~b)lbmb)" 

Since the eigenvectors belonging to d~=O express the linear dependen- 

cies, these cases are omitted in (18.2). 

+)According to the usage of the quantum theory~unitarily equivalent 

formulations have to be termed representations er pictures. The Russel- 

Saunders and the J J coupllng~ or the strong and the weak field picture 

of the ligand field theory are unitarily equivalent only if including 

the full configuration and term interaction. In the same sense/"~O pic- 

ture" means the construction of MOs with the subsequent full CI calcu- 

l ationland "VB picture" includes all AO configurations. Omissions and 

approximations, of course, yield different results within the only ba- 

sic theory, the quantum mechanics. 
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Because the eigenvalue problem (18.3) contains invariants only, the 

eigenvalues are invariants, too. The indirect interrelatign between 
a 

the reduced matrix elements ~il~> and the eigenvalues d o can be made 

some more explicit by the following sum rules: 

If S ~ is an m-dimensional matrix, the first m equations of (18.3) fix 

the eigenvalues. This has been pointed out long ago by Wigner [58]. 

If we take the sum of (18.3) with respect to ~, more stringent sum rules 

result immediately related to the rotational invariants of 

<AnalamaIBnblb~ = j~ ~ <nalallABJllnbl~J(l~+ib)<~l sol JM>(18.4 ) 

a special case of (13.3). The first sums are: 

d~ = Anna a<nalaUO°llnala>°.Z(A)~ (18.5) 

~(d~) 2 = 7"-- T--" Y-Z(-ABT)'m2J'l<nalallT~llnbl~Jl2 (18.6) 
AnalaBnblbTJ 

Similar rules apply to the eigenvalues of all two-centre matrices. 

If we assume a more or less "effective" one-particle Hamiltonian 

for the electrons of a molecule, similar sum rules result for the one- 

a belonging to the symmetry species &: particle energies ¢o 

~(¢~)n = tr((~)n) = tr((Hasa'i)n) (18.7) 
@ 

The Hamlltonian matrices are giyen by Ha =~an.a~Pa~H~kan.~aPa> and 

H~=~al~I~a>/~. Because of (18.1) the inverse overlap matrix is: 

For a preliminary, energetic ordering of the molecular orbitals2a 

H~ckel-like approximation of the two-centre matrix elements <Ainalamal 

IHiBkmblbmb> may be useful. This is an approximation of the type H = 

• I + 8M, where M is a structural matrix representing the coordinatlons, 

cf ~2] section 6.2.2 and [59]. The cited references apply only to s/p~- 

orbitals and equal atomic distances and we have to generalize the struc- 

tural matrix by including different distance vectors and anisotropic 

orbitals. A characteristic of the HGckel approximation for ~-electrons 

is the independence of the matrix elements from the position of the 

involved atomic centres. This means that the "topological operator" 

is regarded as being Invariant to translations and rotations. This as- 

sumption suffices to fix the form of the structural matrix in accord 

to the principles of section i3. In analogy to (i8.4) follows: 

<A"alam,<iT°P IBn lbmb> =   r '*ala"' TTO;i'nblb> . .  < m s ° l  
The rotational two-centre invariants --:: ~<n-l-llA~J'T°Pllnbl'>~ are the ge- 
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neralizatlon of the HGckel parameter ~. Because of the triangular re- 

lation ~la-lb~ J ~la+l b and the parity rule la+lb-J=O modulo 2~the 

number of the invariants in (18.4 and 9) is equal to the 0-, ~-, 8- 

etc. bonds of the orbitals at the centres A and B. This interrelation 

is made explicit by choosing the distance vector AB parallel tO the 

z-axis. This produces the standard integrals [60] or standard parame- 

ters: 

TOPm(nalanblb, AB) = ~Analam~To p IBnblbm~AB#z (18.10) 

Sm(nalanblb,AB) = ~AnalamIBnblbm)AB/iz , 

where in the usual notation So=S~, SI=S , $2=S 8 etc. By inverting (18. 

4 and 9) the invariants are expressed by the standard integrals: 

~nala~ ABJTopU nblb>J= -J laJ1 lb-m ~-AB ~m(m O_m b) (-I) "T°Pm(nalanblb'AB) (18.11) 

<nalaUABJ[Inbl~ J = ~g~i-~'A~-J~'(laJ~ ...... ~m O-m lb~ ~ (-1)lb-m'Sm(nalanblb 'AB) 
m 

The H~ckel-like approximation mentioned above now can be written as: 

(Ainalama IHIBknblbmb~ = ~(nala) 8(A,B) 8(i,k) 8(na,nb) 8(la,lb) 8(ma,mb) 

+ ~Ainalam a IT op I Bknblbmb~ (18.12) 

Its eigenvalues belonging to the several symmetry species then for in- 

stance follow from (18.7). If the numbez of parameters is still to 

large, one might think of the further reduction, 

~nalal I AB J, TopUnbl~J = ~ (nalanblb, AB) (nalall ABJII nblb~ , 

where the overlap invariants may be estimated using the Slater orbi- 

tals according to the Slater rules. 

The heuristlcal order of the M0s obtained in this way may serve as 

a preparation for the Hartree-Fock-Roothaan approach [61]. Such a prep- 

aration is necessary in the case of symmetric systems, The building up 

principle requires in this case that we attach a given number of shells 

with given occupation numbers to each symmetry species. This is so, be- 

cause the variation of the orbitals does not alter their symmetry spe- 
cies. 

For the purpose of the VB picture on the other hand 7 orthogonalized 

atomic orbitals are of interest. An appropriate basis is that of the 

L~wdin orbitals [57] : 

IL~w.Ainalam ~ = T-- V-- (S -I/2) • IBknblbmb> (18.13) 
~b~bmb Bknblbmb' Ainal ama 

The problem is the calculation of the root of the inverse overlap ma- 

trix. In analogy to (18.8)~ we first calculate S ~'I/2, which is the non- 

group-theoretical part of the calculation. Then inverting (15.3) by 

(15.5)~ we go back to the angular momentum basis: 



where we have to remember 
bicentric matrix S- 1/2 is 

$ = (~dd,n,l,aa);. On the other hand,the 
a special case of (4.16) and allows the fol- 

lowing representation by two-centre invariants: 

where the BRMs result from the eigenvdlues and eigenvectors of (18.1): 

s-'/* (halaaall~nblbpb) Eee = z ( - a s )  dime: p i d  (bb%+fi) {abte6] 
t l =  

-A B s (18.16) 
=?%I b a a ?+} apbq ms ( a' p>+) .~i~(d:)-~/~ 

aide q 30 
In essence this is an inversion of (5.13). 
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19. Many-electron I systems 

i9.1. Summary of the occupation operator technique 

A concise description of symmetric many-eleclron systems is achieved 

by using the occupation operators, as has been shown by Judd in the 

case of atomic spectroscopy [62]. But the conventional approach to 

this technique is quite fussy. There is no need of the detour via a 

special one-particle basis, determinantal functions, the occupation 

number representation and so on. This applies especially to symmetric 

systems, the states of which in general are no determinants at all. 

We therefore define the creation and annihilation operators with re- 

spect to an arbitrary orbital ~ directly by their effect on an ar- 

bitrary N-particle function IN~. Such a state is only restricted by 

the f~ermion property: 

TCi,k)<r l . . . rNIN~ ) - -  (-1) - ~r i . . . rNtN~> , (19.1) 
where T(i,k) means the transposition of r i and rk: 

T(i,~)<r1...ri_Iriri+1...rk_Ir~r~+1...rNIN~ > 
(19.2) 

= <rl""" ri-lr~ri +2""" r~-Irir~+l "" "rN I N~> 
The operators a+(@) and a(~) adding and annihilating an electron in 

the orbital I~> now are defined by 

a+(~) IN~> = IN+I~> (19.3) 
a(~) IN~> = IN-I#~> , (19.4) 

where the (N+I)- and (N-1)-particle functions are given by 

<r,...r~+, IN+'~> = ( '~)~( ' ' )N+' ' iT(N+' ,")<rN+,  I~<r,...rNIN~(>19.5 ) 
<rl...r~, i JN-I~> : ~/<~lrNXrl...rNIN~>d~r N (19.6) 

The consistency of these definitions requires the proof, that 

a+(~) and a(~) are adjoint operators, i.e. 

<N+l~la+(~) IN~> = <N~la(~)IN+I~ (19.7) 

with arbitrary IN+I~> and ~N~>. (Assuming two determinants differing 

just by the one orbital I~> makes the proof at least very incomplete.) 

The proof is as follows: 

<N+I~Ia+(~)IN~>- - (lX~-~)Zj'...f<N+I lr~...rN+1> 

-(-I)N+I=iT(N+I,i)<rN+ 11~<~i...rNl~>d3r!..,d ~rN+ I 

Since the notation of the integration variables is arbitrary, we in- 

terchange some of them: 

= ( I /~ )~ f . . . j ( -1 )N'1 -±  [T(N+I,i)<N+IHrI...rN+1> ] 
"<rN+ll)><r1"''rNIN~rl .... d~rN+1 

Because of (19.2): 
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and wi th  ( 1 9 . 6 ) :  

1 / . . . / < a ( ~ ) ( N + ~ ) l l r ~ . . . r N > ~ . . . r N I N ~ d 3 r ~ . . . d 3 r N  _ < a ( ~ ) ( N + ~ ) I N ~  ' 

which completes the proof. 

From (19.1-6) further follow the well-known commutation relations: 

[a+(~l,a+(nl]+= 0 (19.81 

[a(~),a(D)]+ = 0 (19.9) 

[a+(~),a(D)]+ = @I~> (19.10) 

The last equation indicates the complications arising from the use 

of non-orthogonal one-particle bases. For this reaso~ we have set up 

the kanonical and the L~wdin bases in the preceedlng section and pre- 

an orthogonal basis <ilk>=6ik in the following. With suppose respect 

to such a basislwe have the well-known operator representations 

T = ~Itlk>a+(i)a(k) (19.11) 

for a one-particle operator and 

G = (ll2)~<iklgllm > a+(i)a+(k)a(1)aCm) (19.12) 

for a two-particle operator. The essential point in the proof of 

(19. II) is the expansion 
N 

T = ~ ti = ~<r ll~ItIl>~ri> 

in combination with (19.6/7). The proof of (19.12) requires the simi- 

lar expansion of G. The matrix elements of arbitrary N-particle states 

then are: 

<N~T IN~= ~<i I t Ik~ a+(i) a(k) IN~ (19.13) 

and 

<N~I G IN~= ~ ~<ik ~ g ~ ImXN~I a+(i) a+(k) a(1) a(m) I N~, (19.14) 

i.e. weighted sums of the one- and two-particle matrix elements. The 

weight factors are called one- and two-particle density matrices. If 

the many-particle functions are built up by a systematic, for instance 

recursive, calculus, the density matrix elements are pure geometric 

and combinatorial coefficients~ cf.eq.(19.23). This scheme now has to 

be transferred to the symmetrized MO and VB picture. 

19.2. Group theory and occupation operators 

For the purpose of the MO picturejwe use for instance the kanoni- 

cal orbitals (18.2) as a starting point. These delocalized orbitals 

have the same transformation properties as the orbitals of one-centre 

expansions and approximations. We therefore can take over the aufbau 

principle of the strongfield coupling. But in contrast to the atomic 

spectroscopy;there is no universal energetic order of the orbitals. 
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This is demonstrated by the example discussed in ~2], page 444. The 

chemical intuition is supported by the topological considerations of 

the preceeding section. 

The following is known from the literature [5, 8, 9, 16, 17]. Com- 

bining group theory and occupation operators we follow the cited ref. 

[62]. A brief indication ceneerning point groups is given in [6]. The 

main interest of the following repetition of [16, 17] is to get a mo- 

del for the VBpicture• As in these references#the quantum numbers 

are optionally single numbed for G~in yy-coupling or double indices 

for GxSU(2) in ~S-coupling (cf. section 2.9.). Thus there is no need 

to mention the spin explicitly. The main point in the sense of this 

treaty is that (19.13 and 14) again turn into interrelations between 

reduced many-particle and reduced one- and two-particle matrix ele- 

ments mediated again by geometric and combinatorial factors. 

The occupation operators of a s.-a. kanonical (spin) orbital (18.2) 

Ikan.~pa ~ are a+(kan.~pa) and a(kan.~pa). In the following~we do 

not explicitly mention the index kan., because it does not affect the 

group theory. The operators are (double) tensor operators transfor- 

ming in accordance with the representations ~ and a+ (note the dag- 

ger). Since the proof given in [6] does not apply to point groups, 

we show the transformation property of a(~aPa). In analogy to (2.6)/ 

the unitary operator representation of g ~ G is defined by 

(rl...r~IU(g) b~> = @-irl .... g-lr~JN~> (19.15) 
We thus have: 

U(g)a(~aPa)IN~) = U(g) IN-l~o~p~ 

= . .  1 

Because of (19.15): 

and with (19.6): 

= f o o/1 r l .  • • rN_l~(O~pa ] g - i r l ~ g - i r i  o o o g-lrN ] Ni~d3 r i  o..  d3 rN •V-N 

With (19.15) again: 

= fl..flrl...r~_i><Oapa[g-ir~><~i...r~lU(g)]~bd'ri...d~r~'T~ 
Further with (2.17): 

= z p(g) (~aqalr~>(ri...r~Iu(g) ]N~-)d'ri...d~rN.V-~ 
qa a a 

and (19.6) again: 

= ~ , -~gJ aC~aPa)U(g)lN ~ 
qa ~a~a 

since ~N~> is arbitrary, we conclude: 
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U(g)a(~pa) = ~ D~ ~(g~.a(~qa)U(g) ~ 
qa qa~a 

or with (2.5): 
= Z ) - "  , U(g)a(CaPa)U(g)" + qa "a~a 

which has to be shown. 

The commutators (19.8-I0) now appear as: 

[a+(~&Pa )' a+(~$Pb)] + = [a(~&pa), a(~$pb) ] += 0 
(19.17) 

[a+(a~pa),a(xSpb)]+ = 6(~,~)6(&,$)6(pa,Pb) 

The 6(~,~) does not result from group theory, but from the choice of 

(18.2). 
The many-particle functions are built up in priciple recursively: 

~+--+ • 

IN+leePe > = ~e~di-m~(p ~ ~)~.a+(~aPa)IN6dPd > (19.18) 
ad e 

with ~ = (6d~&~). In order to select an orthonormal set from the func- 

tions defined in (19.18~ the godparent scheme in connection with LGw- 

dins orthogonalization has been proposed in [16]. As an alternative 

one may think of the seniority or quasi-spin formalism [63]. Further 

it is advisable to use (19.18) only within each shell and to combine 

the (open or closed) shells afterwards, ~f.[16] section 6. But the 

details are not relevant in the present context. 

If we apply the WET to the creation operators2we get: 

<NeePela+(~&pa)IN-18dPd> = [<Ne41a+(~&)llN-16d>~.(~+~ ~)~ (19.19) 
~ ~e~a~d 

Except for a factor~the RMEs arethe coefficients of fractional pa- 

rentage (OFP): 

<Neell a+(aa)H N'i6d>D = (-i)N~~e ~N-16d, ~>~ (19. 2O) 

This relation shows that the concept of fractional parentage is 

not restricted to certain recursive schemes. It makes sense in much 

more general circustances. We glve an extreme example: INEePe > may 

be a strong field coupling function, IN-16dPd > a weak field coupling 
+ , 

function both built up from GTOs, and a (~aPa) the creator of a STO. 

Because of (19.5)! the CFP can be Calculated, if the functions are gi- 

ven explicitly. If on the other hand a recursive construction accor- 

ding to (19.18) is used, the CFPs can be calculated recursively with- 

out explicit knowledge of the many-particle functions. 

The analogue of (19.11) then is: 

T ° = W.T-< lalpilt ci 2azp2>a+(%alpl)a( 2a2p 
Pc oiaiP i (%9.21) 

• + @ 
• c • a c a  ea + a a~a 

= ~ 5"--<~laillt Bo2a2>e(p~p p~) (~i IPi ) ( 2 2P2 ) 
~iaiPi ~ a c 

From ($9.20/2i) results the general interrelation between the reduced 
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many-particle and the reduced one-particle matrix elements: 

<~61dlllmCll~82d2>n 5--.5--<ol&llltCllo2~2>c ~ n E  • • = .gSldi,82d~ial,~2a2,c) (19.22) 
~iai ~ 

with the weight factor: 

NB~ • • 
gSldi'82d~°$al'~2a2'c) = N~dimd~dimd)~N-i~f'~laI~NSld~° (I9.23) 

• alca2~ a2 +a a ~o~ 

This again is a relation of the principal type (1.2) with the geo- 

metrical factor (19.23). We have termed it g.. keeping to the nota- 

tion of Griffith ~5], section 7.2. 

Similar relations result for the two-particle operators. (19.12) 

reads now: 

°iaiPi a+(oi~Ipl)a+(o2~2P2)a(o3~3P3)a(o4~4P4) 
(19.24) 

= ( I / 2 )  T - " - ' { ( O l i l , ~  i )Tcllgll 
~i~iPiy~ c i 2 2 (~3a3'°4a4)~c~ 

• A+((~lal,o2a2)yCPc)A((o3a3,~4a4)gcP c) 

with the pair operators (s.-a. geminal creation operators): 

• . ~+~+c y. + • a + A÷((~lal,a212)ToPo ) = dd~Z(plp2p ) a (~lalPl) (62 2P2 ) (19.251 
i z c 

From these operators follow the two-particle CFP: 

<~elIA+((~lii,~2~2 )YO)u N-26d>~ (19.26) 

= V~(~-i)dime{~e{l~-2~d,(olii,o2i2)Yc ~ 
And the matrix elements of the two-particle operator finally are: 

• . " & . . (19.27) 
~N-2~f, ( ~lal, ~2a2)y cl}N61d~ ~-2~f, (~3a3, ~4a4 ) #0~N82~ ~ 

again a relation of type (1.2). 

As a consequence of the delocalization of the kanonical MOslthe 

results~shortly summarized here~have no specific polycentric charac- 

ter. This character again appears, if we calculate the density ma- 

trix of a molecular state with respect to a localized AO basis~in or- 

der to read the charge and bond orders with respect to thls basis 

[64]. We only discuss the density matrices of totally symmetric 

states or the average density of degenerate states• Taking the aver- 

age is equivalent to picking out the totally symmetric part of the 

density matrix [65]~ 

~Ai~aaPa,BkPbbPb = dlmd-i~N~dPdla+(AiPaaPa)a(Bk~bbPb)~NSdPd~(19"28) 
Pd 
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Because of (19.19/20); this is essentially a bilinear sum of OFP in 

the AO basis. As a typical two-centre matrix~(19.28) falls within the 

scope of (4.13) and has the following representation: 

6 a+b e + ---* 
~Ai~aaPa,Bk~bbP b = e~er(A~aaUB~bb)s~e(paPbP~7~(SikIS~ePe ) (19.29) 

The BEEs with S~O are the symmetry-invariant representation of the 

bond orders classified according to the bond edges, those with S=O 

the charge orders. This is the solution of the problem posed in [64], 

page 60, i.e. the problem to define the bond orders invariantly to 

symmetry operations in the presence of several bonding electrons. 
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20. Sketch of the VB picture 

In contrast to the MO picturelthe VB picture naturally contributes 

further stimulating aspects to the polycentric algebra. After the in- 

itial success by Heitler and London the VB picture ~66~ has not been 

popular because of the multitude of configurations. But the calcula- 

tions~focussed on the atoms and compounds of the first period~have 

led to a one-sided view. Among the transition-me~al and lanthanide 

compoundstreated in the first approximation by the weak field coup- 

ling~there are obvious candidates for VB calculations and moreover 

of its atoms-in-molecules versi~ proposed by Moffitt ~67~. In this 

connection~ we again point to the discussion in ~521, page 444. In 

view of the expenditure on CI calculations the VBmay become competi- 

tive again. 

Avoiding orthogonality problems~we start from the L~wdin basis (18. 

13) and adapt it to the symmetry group: 

~L~w.Ai~aaP~= Z~L~w.Ainalama~lama~la~aPa~ (20.I) 

with ~a=(nala~). The commutation relations of the pertinent occupa- 

tion operators are: 

[a+(L~w.Ai~aaPa),a+(L~w.Bk~bbPb)]+=[a(L~w.Ai~aaPa),a(L~w.Bk~bbPb)]+=O 

[a+(L~w.Ai~aaPa),a(5~w.Bk~bbPb)]+=8(A,B)8(i,k)8(~a,~b)8(a,b)8(pa,Pb) 

where in detail 8(~a,~b)=8(na,nb)8(la,lb)8(~,~ ). (20.2) 

After the model of (19.18)~one generates the VB functions by re- 

peated application of the creation operators. Each added (spin) orbi- 

tal introduces a new centre into the many-particle function, so that 

every VB function is associated with a more or less asymmetric poly- 

hedron. The vertices, some of which may coincide again, are valued 

differentlyby the AOs. 

Against the first sight, this building up does not lead to an incal- 

culable multitude of different polyhedra because of two reasons. By 

(3.25), (7.8), and (10.2) we already have become aquainted with the 

equivalence of polyhedra and vectors inducing the same representation 

of the symmetry group. There is only a limited number of such repre- 

sentations, which are determined by the vectors a) in general position, 

b) on equivalent plains of reflection, and c) on equivalent axes of 

rotation. Because of this equivalence~the polyhedra fall into classes 

inducing equivalent representations. Fully identical representations 

are achieved only, if the numbering of the polyhedra is coordinated. 

On the other hand, the number of different polyhedra is limited by 

the Pauli principle. If all orbitals ~Ai~aaPa~With fixed A, ~a' and 

a are doubly occupied, the result is a full supershell. We use this 

term with respect to reducible representations. In general a super- 
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shell contains several ordinary shells belonging to irreducible repre- 

sentations. The polyhedron associated with the supershell has 2.dima. 

Z(A) vertices, 2.dima of which coincide at each centre. Therefore it 

is totally symmetric~and there are no higher polyhedra within a super- 

shell. 

In the following~P n represents a set of equivalent polyhedra with 

n vertices and Pkn the k-th polyhedron of this set. The symmetry-adap- 

tation of a scalar polyhedral function (~kjF) is analogous to (3.17): 

(pneePeIF) = ~(pn~ePe~P~)(~klF) , (20.3) 

where the SALC coefficients (pneepAIP~) are determined via the asso- 
.~"~_ • ~ ~ n~ 

ciated vectors Pk=~'-~Ai A i wlth Ai~P k. 
• Ai 

In parallel to (19.18)~ we now generate the many-particle VB states: 

, -n+1 ~ -. m ~" a+c+d" e. ̂, A pnQn+i 
IQ~+16dPd~-{d}~Z~ )al a~paPcP~ ~ti k 1 )'a+(LSw'A~aaPa)l~kYCPc> 

(20.4) 
with 6=(A~aa,pnyc,c). The quantum numbers 8 and Y recursively notify 

the antecedents of the state. $ is the generalization of our topolo- 

gical matrices and does not vanish only, if Q~+I comes from ~k by the 

addition of the new vertex at Ai: 

~ A pnQn+l { I / ~  if ~ k *~i  = Q~ +I 
' (2o.5) 

~ ( i  k 1 ) = 0 o t h e r w i s e  

Obviously there are orthogonality relations like: 

k 1 )'~(i k m ) = 6(Q,R)6(1,m)/Z( (20.6) 
~(: pnQn+t A A pnRn+i Qn+i) 

Apart from the antisymmetrization~the formation of the geminals (9.3) 

is a simple example of (20.4). The states generated in this way are 

in general non-orthogonal and moreover often linearly dependent. Of 

cours, the diagonalization of the overlap matrix of these state may 

serve for the orthonormalization again. But because of the high dimen- 

sion of the supershellspother methods;like the quasi-spin or seniority 

fermalism~will be more economic. The functions (20.4~transform in 

accord to the reducible product representation d xo~. 

d is a translation invariant or a s.-a. operator at the centre If Tp 

n d iRl~ePe> are associated of symmetry, the matrix elements <~eePelTp. n i, 

with a polyhedron of 2n vertices composed o~ the polyhedra ~ and R~. 

We express this composition by another topological relation: 

^ QnRnp2n { I / ~ ,  if ~ ~ R~ = p~n (20.7) 

~(k l m ) = 0 otherwise 

Having defined thislwe can state the following theorem: 
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n e d n i i  (~Q~E: Pe,Tpd,Rl~eP~ = ~-- ~'--'(Qn~eUTd,,Rn~:'~).~p'(;~p~f)f'q(f+d PT ~ 
"PfPdPP (20.8) f~Pm~p 

~ ^nRn-2n ^n ^ 
• M r z zn 
#Z(PLn)x(k I m)'(Pm ~P ~PPp) 

This theorem~including the proof~ agrees totally with (4.6). The inva- 
rlants therefore are termed polyhedral, reduced matrix elements (PRM). 

The polyhedral VB functions (20.4) now are combined to SALCs. This 

is quite analogous to (5.1): 

,Qn fpf~ . ~p~(.rlfpf, Qnk6d, ePe)., Q~E ePe)> (20.9) 

with ~=(ce,6d,~), where ~ is a compound index corresponding with (20. 

4). The generalized SALC coefficient is: 

}C(~fpf,Q kSd,ePe ) = l~)'(~+~+~)~.(Q~IQn6dPd ) (20.~O) 
2d~e~f 

Apart from (5.1)twe already know another example of (20.9), namely 
the formation of the s.-a. geminals (9.4). 

Again we apply the WET to the matrix elements of the states (20.9) 

n + n f T c n <(Q ~ Pfl pc IR YgPg~ a o n f o g a = ~Q ~f!IT IIR yg~E(pfpcP)g , (20.II) 

the RMEs of which are related to the PREs quite in parallel to the 

relations (5.5 or 8). This relation requires the definition of a po- 
lyhedral isoscalar generalizing (6.6) : 

IQnRnp2nl (20.12) n 2n 
~R P n n6d n n Plsl6 ? ~ l~=~m~(k I m )(Q~IQ Pd)CRllR OrPr)(Pm2nlsZn ppp)(d r p~c~ 

- pdPrP~ ~d rp l 
Then follows the theorem: 

(~on~fll TCiiRny~B 11 = /~ ~nl t.hdx ~'GEOi(x, y, z), (Qn~I TC[I ~ ~e) p~p (20.13) 
Z 

with the generalized geometrical factor 
l^nRnp~"' l"f + c " ¢~ 

G o (x,y,z) _- 1.1  
e Id+d ' p le (e d+h+J~ 

and the compound indices ~=(ae,6d,D), y=(Zd,6~,e), y=(6d~f,Sdeg,~), 
x=(Qne,Rne~,c), and z=(ho~p2nRp). 

Besides (5.5)lanother example of (20.13) is hidden in (ll.20), 

since the geometrical factor GEO 3 is composed of three factors of the 

general type GEO i, From the general point of view the polyhedral iso- 
scalar of the third kind is nothing but 

The 6J symbol appears in (~1.20) instead of a 9J symbol as a result 
of (2.52/53), because the operator is a scalar. 

One-partlcle operators have the representation 
T c - ~ ~ ~LBw.Ai~ ap ~t c IL~w.Bk~bp~ 

- ~ a a ~c _ ~ ~ - -  ( 2 0 . ~ 6 )  

Pc- AiBk Vx~x .a~(T~w.Ai~aaPa)a(T.~w.Bk~bbPb ) 
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and in order to trace back the PRMs to the one-particle matrix ele- 
ments and their invariants, we must examine the polyhedral matrix 
elements of the occupation operators, i.e. ~Qn+lsdP_la+(L~w.Ai~ ap )l 

Xl.n --~ --n . ~ .  G a a 
'-~ ~]Ir~cePe ~. These matrix elements are zero, if P~+AI=R~+I~Q~+I ! for the 

^n+1 VB funetions referring to ~+I and M 1 are mutually orthogonal, since 
they differ by one L~wdin orbital. Hence the matrix elements behave 

like the topological matrices (20.5) and allow the factorization: 
^n+IA 

~Q~+IgdPdla+(L~w.Ai~aaPa) iP~eePe~=C.~(~l ~ ~n) 

The proportiorallty factor 0 transforms according to the direct pro- 

duct d÷x a~e, so that the WET yields a further factorization: 

~Q~+18dp d I a+(L~w. Ai~aaPa)~kC ePe~ ( 20.17 ) 

=Z~Q n+16dlla+(A@aa)llPnee~ (d+; ;) g.$(Ql+1~ k )Fn 
aae 

At this point! one might argue that the matrix elements transform ac- 

cording to the sixfold product d+XaxeAo x oA~oP~and should have a 

more complex coupling structure than (20.17). But since the couplings 
of the polyhedra and of the orbital representations have been kept 

gtrictly apart in (20.4), the matrix behaves like a double tensor of 
0 "#  o.p '~ [+x a x e on one hand and of a~x oA~ on the other. 

In analogy to (19.20)pthe polyhedral CFP are defined as follows: 

pnee, A~ a ~@+I 8dll a+ (A~aa) U Pne e~p= (-I) n+~(n+i) g ( Qn+i i dimdf~Qn+l 8d {I a( 2~. 18 ) 

Having defined this~we can determine the PRMs of (20.8) by the 

BRMs of the L~wdin orbitals, a relation that replaces (19.22) in the 

VB case. For this purpose~we solve (20.8) for the PRMs: 
• 2n 2n ~ ~Rnp 2n (Qn~elITClIRn~'~)f~p = ~ . d l m f . ~ ( P  ~pp IPm ) 'X(k  1 m ) ...... 

K±m P L,'u.:~) 
tf+c P$~te+e I f~D~/~n_^_ imc i~n~^,~/ \ 

"~.~ ?~ ~ , ' (P 'K~ ~l ~J " \ M  ~ i ~ e l X ? ~  I ~ ~-=~,e / 
~' f~e~ 'p  ~'e~e~'p ~'c 

For the matrix elements on the right sidexwe substitute (20.16) and 
(4.6)for the one-particle matrix elements in (20.16). This yields: 

wit , the pre- 
~entlthe geometrical factor is given by: 

2n 2n ~ R P EO9(x'Y)=~#Z(P~Z(-ABS)'dimf°~--" ~'~m ^ n n 2n ~(P XPPpJPm )'~(k 1 m )(f+c p~ 
PfPcP~ 

e+~ f~D~a+b g~y~g+c s+~._~-ABS~ f~-~ 
• ~ W~ ~ ~ ~# ~ ~ ~ ~ Ht~tlSOSPs) 
2e~e2f 2a~b2g ~g2o2s ~ 

• ~eePe~a + (L~w. Ai~a aPa) a(L~w.Bj~ bbpb) I R~e/P~e ~ 

~.tween the two occupation operators we insert a comp" ete function 

~pdl~r 8dPd>~ r 8dPd~, express t?e resulting ma- stem, i.e. ~- n-I n-1 
T~ 
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trix elements by (20.17) and collect the 3jm symbols in a 6j symbol: 

GEO 9 (x,y) -- 8 (f, g) 8 ( s, p) 8 (~, ~) dims-1#Z (P~ z ( - ABS)' ~ba+fy~+bd~] 
a + + _, n n 2n o~l~ 

e d 2 2 ^ Q R P -ABS 
"{b e If+}~¥~'~mi~Tr (P ~SPs~Pm)(St~SaSPs)~(k I m )~( ijt ) 

n.Qn A Tn-i^,Rn B n-i 
T ) ~QnEe~I a+(A~aa)ll Tn-18d~g~Rna1~ii a+(B~bb) u Tn-i8d~gl 

"~kk i r )~kl j 
From this expressicnlwe isolate the following topological invariant, 
which is remotely similar to a 6j symbol: 

Tn-~A. RnB -i ~ Q R P )~(-ABS A Q A PW~ Q R A P~T/S~S~= dims n n 2n n '~tl Tn-1 
~mi~rx(k 1 m ijt)~(k i r j r )(20.21) 

• (~t ~ SaSPs)(P2n~SPs ~ Pm~ 

It relates the edges S associated with the one-particle BRMs to the 
polyhedra p2, belonging to the many-particle PRMs. Speaking more pre- 
clsely, it indicates, which edges S interrelate the centres in Qn with 
those in R n and if the representations a S and a P2" have in common the 
irreducible representation s. 

Introducing the polyhedral CFP by (20.18) yields the final expres- 
sion of the geometrical factor: 

GEO9(x,y) = 8(f,g)8(s,p)8(~,~).n.#Z(P~Z(-ABS)Z(Qn)Z(Rn)dime.dime l' 

.~ba+f?~-d~-~+bd~eTsp,~ .~ "" a+d+? • I QR 

"~Qn~ e{ITn'I 8d, A~aa~g ~RnaI~ITn- I 8 d, B~bb~ ~r 

By inserting (20.20) into (20.13)~ we can directly link the RMEs 
of the s.-a. VB functions to the one-particle BRMs: 

~Qn~l TeuRn~a, = ~ GEOIo(Xl,y i,y2). (L~w.A~aalltCu L~w.B~bb)g~s~ (20.23) 
Y2 

with ~=(ee,8d,~), ~(s~,8~,W), xi=(Qn e,R n e~,c), yi=(8d~f,~d'W~,~), 

and y2=(A~aa,B~bb,S~s,gT~) and the compound factor: 

GEO~o(Xl,yl,Y 2) = ~p~pGEO~(xl,yi,z i) GEO9(z2,Y2), (20.24) 

where z~=(ha~l~p) and z2=(Qnee,Rn~#,hax,P2~p). 

Of course, a similar analysis involving the polyhedral two-parti- 
cle CFP can be made for the two-partlcle interaction operators. 
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21. Prospect of crystals 

As mentioned inthe introduction~the symmetry analysis lined out, 

so far, can be transferred to crystals, i.e. to space groups. To be- 

gin wlth~we confine the discussion to the formation of SALOs, as far 

as this can be achieved without using projective representations [68]. 

21,1, The irreducible representations of space groups 

We summarize the concepts needed to set up the irreducible repre- 

sentations of space groups. In general we keep to the book of Streit- 

wolf [57]. 
The space group is marked by G, the related point group by Go~ G/T, 

where T is the translation group. An element { ~  of a space group 

is the operation defined by a translation ~T and a rotation ~ Go: 

Free this definition follows ~l~I~ = ~ + ~ ]  and ~-I= 

{~-II-~'l~ ~. The unitary operator representing ~I~G in the function 

space is in accordance with (4.2) defined by: 

The irreducible representations of the space groups are character. 

ized by wave vectors within the first Brillouin zone. To each wave 

vector k belongs a subgroup Go, eGo, the elements of which leave 

invariant or transform it into anequivalent wave vector: 

Go~ = ~ with ~eG O and ~= ~ + ~), (21.3) 

where ~means a lattice vector of the reciprocal lattice. This point 

group is also termed the little cogroup of~ [68]. The irreducible, 

projective representations b of these cogroups enter the ordinary, 

irreducible representations of the space groups. We designate the Jr" 

reducible, projective representations of the little cogroups by 

D kb (~) with ~ ~ Go~ , (21.4) 
Pbqb 

where~indicates the pertinent wave veetor. Because this concept of 

projective representations is significant only for some wave vectors 

at the surface of the Brillouin zone of non-symmorphic space groups, 

it is entirely avoided by Streitwolf [37]. But it allows the general 

and concise formulation of all irreducible representations of all 

space groups (21.10) below, cf.~68]. 

In order to select the elements of Go~ from those of Go, we define 

the symbol ~t ~ I if ~ GO~ , i.e. ~=~+~ 
a_~) = ( 2 1 . 5 )  

o i f  i . e .  

The eoset decomposition of G O with respect to GO~ is: 
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G O = ~ ~iGo~ (21.6) 

with the coset representatives ~i" 

By applying these representatives to ~one generates a set of wave 

vectors ~ (within the first Brillouin zone), the so called star of 

~, which--is designated by +k: 

: with %= ÷ (2 7) 

We choose ~i=e, i.e. ~,=~. The vectors Z~+k are termed the prongs 

of the star. 

We now can generalize (21.5) to all ~ ~ G o by defining 

~j(~) =/~ (~[lacj) , (21.8) 
or because of (21.5 and 7): 

{: if ~J=~i +~ 
Aij(~) = ~ ~ (21.9) 

i f   jCk i + 
Now all necessary notations are collected to write down all irre- 

ducible representations of the space groups. These are determined by 

a star +k and an irreducible (projective) representation b of Go~ 

with~+k. The components of the representations are determined like- 

wise by a double index, i.e. by the prong j (~i respectively) and by 

th~t~component Pb of b(Go~). Using (2.4)jthe representation matrices 
D~kb)([~l~]) then are given by: 

(+kb) - i  

are denoted Ip(+kb)iPb>, where p is a discrimi- The associated bases 

nating index. 

At this point,we must insert a marginal note concerning the phase 

in eq. (21.10). This phase is sometimes chosen more complicate as in 

[69], eq.(4.19) and [70b], eq,(l.4). The difference resul~s from two 
kb gauge transfol~mations, A) of the representations of G^~: D (~) = 

ex~(-i~.v-*~).Dk-b(~) and B) of the bases. ~p(+kb)ip-~ ~=expii~..~ ). 
~( kb)ip~, where % denotes the non-primitive translation belong- 

ing to the rotation or reflection y. We have three reasons for our 

choice of ~he phase: A) for internal points of the Brillouln zone our 

matrices D~b(~) are genuine vector representations and not only pro- 

jectively-equivalent to vector representations, cf.eq.(4.25) of [69]. 

B) In the following relations concerning the bases (21.15 and 14) no 

phase factors occur. C) Eq. (2~.I0) is plainly simpler. 

The transformation property of the bases with respect to the ope- 
ration (21.2) is now given by: 

(+kb) 
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The SALCs or tight-binding functions intended have to comply with this 

relation. Since we have derived the theory of SALO coefficients for 

ordinary vector representations only, we must exclude the few cases 

requiring really projective representations. 

21.2. Symmetry-adapted functions for symmorphic space groups 

We start with a construction, which is restricted to symmorphic 

space groups but immediately resumes the molecular symmetry-adaption! 

for in the the symmorphic case the Wigner-Seitz unit cell can be trea- 

ted like a molecule and the point-group adaption can be simply com- 

bined with the well-knownBloch sums C37], eq.(6.14). 

The relations (2i.I0 and 11) suggest that the atomic orbitals must 

be adapted to the pertinent little cogroup. The coupling according 

to (5.2) then has to be done with respect to the same group. The ad- 

aptation thus depends on the point of the Brillouin zone. 

In order not to operate with SALC coefficients, 3jm symbols, and 

s.-a. atomic orbitals of several point groupssimultaneousl~we pro- 

ceed as follows. All atomic orbitals are classified according to the 

irreducible representations of G o and in the frame of a universal, 

fixed coordinate system. Then the s.-a. Wigner-Seitz-cell orbitals 

are formed using the SALC coefficients belonging to G o. And only in 

conclusionl the SALCs are subduced to Go~ if necessary. If ~i are the 

position vectors of the equivalent atoms within the Wigner-Seltz cell, 

the s.-a. cell orbitals according to (5.1/2) are given by: 

k~rl(Aee,~aa)~CPc~ = ~K°(~CPc,Ai~e,aPa).~-A~l~aaPa~ 
IP a 

++ 
= . eacy e with KO(VcPc,Aise,aPa ) ~cld~Z (P P P) (~iiAe Pe ) 

Pe e a c 
For~=OpG o is the little cogroup and the s.-a. tight-binding functions 

are simple Bloch sums for the lattice vectors ~: 

~lS(+Oc)OPc~ = ~pK°(yCPc,Aiee,aPa)~-~-~aaP~ (21.12) 

with 8=(~aaAceT)o 

In the other cases~the s.-a. Wigner-Seitz-cell orbitals have to 

be subduced to the little cogroup G0~ belonging to the relative prong 

~. All little cogroups GO~ j belongin~ to the same star are isomorphic 

to Go~: 

Go,j= ~IGo~ j 

Thls means for the representation matrices: 

D~b ^ , ~j~ ,~b - 
2b~b~J~(~#~ = ~Pb q~ji~j)b with ~.~G ~,~ c j ~6Go~ 
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The coordinate axes are different for each ~i and the bases are rela- 
ted by 

u( j)l bp - t jb > (21.13) 
Hence it follows for the adaption coefficients of the group chains 

Go~ Go~ and Go~ Go~: 

~CPc~bP ~ = ~ D°C~(~)~cq.~bp~, (21.14) 
qc ~c~c a , ,  ~ ,  

where c is a representation of G O with the matrices D°C(~). 
We no state that the s°-a. tight-binding functions are given by 

<F't  6 ( + : : b )  J P ' ~  ---> o ( 2 1 . 1 5 )  
= ~ ~-"<CPclEj6bp~K (yCPc,Ai~e,aPa).exp(ik-~j.~.~-A~-~l~aaPa) 

~l paPc 
with 6=(a~aA~eyc~). 

To prove thistwe have to demonstrate the property (21°11/I0). With 
(21.2)~ we have at first: 

~IU (~ I a-*~)I 8(+kb) JP~ • (21.16) 

(~Opc,Ai~e, aPa)~ (r-a-~i-~ I~aaPJ 
= - :  > ~ pa~ c .--~ --* . 0 

Because of (4.2) and (3.3)! it follows 

~a 

and further with (3.5) and (2.22): oc (21.18) 

K°(yCPo,Ai~e,aPa)'D~oa-(~)~Aki(~) = ~K°(yeqc,Ak~e,aqa).DqcPc(~ ) 
~Pa ~a~a qc 

Substituting (21.17/18) into (21.16) yields the intermediate result 

~jU({=l~})J~(+kb)jpb>= Y-" ~ exp(i~.-~)<cp j~pbp~bD °c (=) 
RkPcqaqc ~ c ~ ~ qcPc (21.19) 
• K°(yCqc , Ak~ e, aqa)~-a~-~k-~l ~aaqa~. 

This requires the calculation of the sum 

Pc c c _@ -* 
= Dec ~ Dec -I oc -i k 

~'- o r ( i ) r S(~l ~)Ds ~(~ )~ePc~ki~bP~ i (~) 
e r o S c  ~ c  c c c ~ c ~ c  ~ , 

• ~l~jeGo~ because of (21.9). Using (21.~4)~we get further: where 

Dec oc -~ 
= ~ ~- q r(~l)Dr s(~i ~j)~ScI~pbPb>~j(~) 

ires c C O C O 
= ~-- -- q r- ~- ~-D°C (:i) <Crc l~bq~Dk~1) (b=~i~j)~ki j (~) 

:rcq b c c 
and finally with (21.14) again: 

D°C~(~) ~CPc ~j ~bPb)= ~ ~Cqc I ~" ~bp~Dkb~ ~ (e.-le~)Akj (e) (21.20) 
Pc ~c~c lqb qbPb ~ 

We have to insert this result into (21.19). In additiontwe substitute 

~+~=~or ~=~-i(~.~). Replacing the sum for ~ by a sum for ~we get: 
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~U({~I~}) ~6(+kb)JPb> = B'--'- exp(i,Yk'.,(~J-~)).D ~b (cc-1~oc).A ~ (~) 
~ qbPb I j ij 

" ~c qc l~k~i ~b qb~K° ( yCqc, Ak~ e, aqa) ~-~k-~ ~aaqa~ 

Because of (21.7), ~il(~jeGo~, and (21.3)lwe have:• 

Since ~-~ is a lattice vector in the symmorphio case, this yields: 

exp(i~j. (~i_~)) = exp(iEi(R_a)) 

and we can sum up with (21.15): 

~Iu( {~ I~)16(+kb)j P~:~ (~)D~b~ ((~T1o~(~.~)exp (- i~ "'~)<~ 6 (+kb)iq~ 
qb ~ ~ ~b~b ~ ~ ~ 

This proves (2~.II/I0). 

21.3. Construction includung ncn-symmorphic groups 

The Wigner-Seitz cell of non-symmophic groups is not invariant to 

G O and in general not to Go~. Therefore we can no more rely directly 

upon the SALC coefficients of the pointgroups in the configuration 

space as in (21.12). 

We propose another method likewise applicable to symmorphic and 

non-symmorphic groups. To this end we remember section12. Acceding 

to (12.16)~the SAL~ coefficients could be determined by substituting 

the atomic positions into s.-a. functions. If we set aside the ortho- 

normalization in a first step, every s.-a. may serve for this purpose. 

Such s.-a. functions are the symmetrized plain waves according to 

[37], section 6.2. For internal points of the Brillouin zonepwe can 

set up these symmetrized plain waves again by the help of the SALC 

coefficients using them now in the reciprocal lattice. We again start 

with k=O in order to keep the calculation in G o descending to Gok in 

the end. 

We cheese a set of equivalent lattice vectors in general position. 

This choice avoids invarlance groups Go, and their cosets and yields 

a maximal number of functions. Starting with a lattice vector~in 

general position~we can number the members of the equivalent set by 

the elements ~ @Go: ~R=~. We now claim that the following SALCOf 

plain waves belongs ~to the irreducible representation (+Oe) of the 

space group: 

~IW(+Oe)OPe~ = ~o (~ ~KeePe) • exp(-~ .~) • exp (i~ .r~ (21.21) 

The proof of (21.21) is contained in that of (21.23). 

The symmetrized plain waves ofthe general case~O are: 

~W~( kb)jp~=~(K~iIKeePe)~ePelkj~bp~exp(-iK~.v~0 
~Pe (21.22) 
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But in order apply the coupling coefficients of Gol only we use 
(21.21) to form the s.-a. tight-binding functions for the special 

case ~=0: 
<~t~ TB5 (+Oc)OP~=~ Ko( yCPc' K~ e' aPa)exp [i~t" (K-*+A~t -v-*~) ] <~-R-*-A~ |~aaPa> 

~W~Pa 
with 6=(~aaAKeey). Descending now to Go~ we generate the s•-a. tight- 
binding functions for the general case: j 

~I TB~(+kb) JPb> = ~i ~-- KO(Ycpc'K~IEe' aPa)<CPc ~J ~bpb> 
Rt~ ~ paPc_, -~ -. -~ -- -~ (21.23) 

• exp ~iK~. (R+~t~v ~ )S exp ~ikj. (Rr+A t )S ~i~-]~'- A*t I ~aaP~ 
with ~=(~aaAKaeyc~). 

In our final proof~we show that this formula comprises all tight- 
binding functions of internal points of the first Brillouin zone. At 
first we have with (2i.2): 

~IU({~'~)~TB~(+kb)JPb> = R~' ~p p K°(yOPo'K~'Ee'aPa)<CPoI%~bPb> 
• ~ ~ a ~ _~ ~ _~ exp[i~'(R+~t-~0]exp~ik j (K+At)]<~ (~-a-=R-~At)l~aaPa> 

Substituting ~+~+~t:~ or ~+~=~-i(~+~_~ and using (4.2) yields: 
O ! --~ = exp ~i~I. ( R+A~-a-~v~i)] ~- 5"- K (yCPc,K~ae ,ap a) ~cp c ~j~bPb>. --~-~ -~ -" 

Ku~" paPcqa • - ~  ~ - - V - *  - ~  ca ~ _-W~-~ • exp [l~k j .(R+ A n -a) ] .D ~a~a ~(~) r-R-A.L~I ~ =~aq~ 

Because of {~I~~ = ~ + ~  = ~+~Ithere is the relation 

exp[i~K~.(R~Au-a-~v~) ] = exp[iaK~ (R+~ u- ~)] 
= [y,~y~(~). exp [i~. I~ -* 

Using this and (21.~8)~ we get: 

-~ b [i~,. = ~ -  ~-- K°(yCPc,Ky~e,aqa)D°C~(~)<CPo~kj~ p~xp (~+~-~y,)] 
auy- poqaqo ~c*c. exp [i~%. (R~i.~)]<~_~ % I%aqa> 

and further with (21.20): 
o , -~ ~-% -~ : ~ . ~  K (yCqc,Ky~e,aqa)<Cqolki~bPb>.DqbPb(~ i ~j)Aij(~) 

"'- ~ ~a~b~c -~ ~ -~ -* _-w-- ~ _-w ~- • exp [iK~e (~+Ku-Vy,) ] exp [i~k j • (K+Au-a)]<~-R- ~ ~ ~aaqa> 

From Ai~j(~)~O follows again ~j--~i+~, / i.e. for internal points ~j=~i" 
This requirement restricts the method to internal points. We no col- 
lect the sums according to (2~.~0 and 23): 

( +kb ) ~ 
= ~qbDiqb , JPb (~I~})~ITB~( +kb)iqb> 

and this had to be shown. 
We have pointed out, how we principally can determine the s.-a. 

functions and thereby the SALC coefficients of space groups• A more 
systematic approach results, if we derive2from the symmetrized plain 
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waves;the standard functions of the space groups as in section 12. 

This yields complete orthonormal sets of SALC coefficients. 

There still remains the problem of the surface of the Brilluoin 

zone. In individual casesrone may obtain symmetrized plain waves or 

tight-binding functions by induction from a symmerphic subgroup as 

shown in [37]. 

But the systematic approach requires the projective representations 

of the little cogroups. As has been shown in [7117also the Clebsch- 

Gordan coefficients or 3jm symbols of the space groups are related 

to those of the projective representations of the little cogroups. 

They are treated systematically in the paper of Dirl [70]. Starting 

from the references [69-71]~ one can elaborate the Wigner-Racah alge- 

bra, then the polyhedral invariants of the space groupsyand apply 

beth in the theorems demonstrated in this treatise. 
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22. Case study: Tetrahedral structures 

22.i. Preliminaries and standar d functions 

As an exampleywe consider the polyhedral symmetry properties of some 

tetrahedral structures like the molecules P4 and P406 . The basis of this 

consideration are the classic tables of the characters, the 3jm, the 6j 

and the 9j symbols of the group T d. Because of the isomorphism of the 

point groups T d and O~we can take over the tables given by Griffith ~] 

for the octahedral group O. The full matrices of the irreducible repre- 

sentations have been tabulated by McWeeny [30], table 4.:9/20. The op- 

eration of the group elements of T d on the position vector r is listed 

in the following table. 

Table :. The elements of T d 

g xyz 

E xyz 

x x-y-z C 2 

C y -x y-z 

z 
C 2 -x-y z 

cXYZ 3 zxy 
--l 

c~yZ -z-x y 

g xyz 

C~ yz z-x-y 

~xyz 
u 3 -z x-y 

C-~ yz y z x 

~xyz 
u 3 -y z-x 

~xyz -y-z x 
u 3 
~xYzu3 y-z-x 

and their operation on r. 

g X y Z 

~. y-x-z 
4 

Oxy -y-x z 

~x~ yx z 
Z 

S 4 -y x-z 

Cy z x-z-y 
-X 
S 4 -x z-y 

Xy Z 

X 
S 4 -x-z y 

~yE x z y 

S~ z-y-x 

~z~ z y x 

Ozx -z y-x 

S~ -z-y x 

Before considering specified structurestwe have to prepare a complete 

set of standard functions of the group T d following section i2. From 

the compilation by Bell [38] we take the following set of non-orthogo- 

nal s.-a. functions being complete in the sense of the scalar product 

(.'t2.2): 
:) species 

< - a A l ~  = 
2) species 

A i : 
i 

A2: 
@1A2t> = ( x 2 - # ) ( y ~ - z  2 ) (z~-x  ~ ) 

3) species E (components i and 2): 

<~1 :E:> = 2,, ~-x ~-y2 <~l 2El> = 2~4-x4-y 4 
<~IIE2} = ~(x2'y 2 ) (~12E2} = ~(x4-y 4) 

4) species T~ (components ~, ~, { ): 

<~:~::# = (x~-:~)-., (~s2~j> = (x~-y')x:, /-,~13~::) 
5) species T 2 (components x, y, z): 

<~:~2x> = x <~2~2x > : yz <~13~2x > = 

¢1:~2y> = ~ <~,2~2~ ~ : zx ~3~2_~> 

(22.1) 

(22.2) 

(22.3) 

(y2 _z 2 )X 3 

(z2-x2)y 3 (22.4) 
(x 2 _y2 ) z 3 

X 3 

y3 (22.5) 
Z 3 
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Because the elements of the Gram matrix (12.9) are scalar functions 

of ~, it is advisable to study the scalar functions with respect to T d 

in some detail. There are even scalars of order 2n: 
Sc(2n) = x 2n + y2n + z2n (22.6) 

and a second type of order 2m+2n: 

Sc(2m,2n) = y2mz2n+ z2my2n+ z2mx2n+ x2mz2n+ x2my2n+ y2mx2n (22.7) 

The latter type includes the special case: 

Sc(2n,2n) = 2(y2nz2n+ z2nx2n+ x2ny 2n) 

A third type of even scalar functions is: 

= ~ 2m 2nx2 p 
Sc(2m,2n,2p) i~xi xj k (22,8) 

including the special case: 
Sc(2p,2p,2p) = 6x2p~2pz 2p 

The only essential odd scalar is 

Sc ° = x.y.z, (22.9) 

from which all other odd scalars result by multiplication by an even 

scalar. 

Also the even scalars are not independent , but can be reduced to the 

three basic scalars Sc(2) = r 2, SCo, and Sc(2,2) = 2(y~z2+z2x2+x2y2). 

We give some examples: 

Sc(4) = x4+y4+z 4 = sc(2) 2 - Sc(2,2) 
s0(4,2) = 0,5so(2).sc(2,2) - 3sc~ 

so(6) = so(2) 3 - 1,SSc(2).sc(2,2) + 3sc~ 

We now build up the system of standard function beginning with Gramls 

matrix according to (12.9): 

a ~ = = ~ = Stun( ) (maplnap) <map~gi~F~nap~ dima'1~ Z~aplg~nap~ 
geG p (22.10) 

= (ordG/dima)~<map ~"~lnap) 
P 

The evaluation of the last sum in general requires fewer terms. The 

first standard function can be taken directly from the sets (22.1-5): 

~Ist.lap~ = ~I1ap~ (22.11) 

with ~(la,~ = S~I(~ according to (12.3). 

In the case of two- and three-dimensional representations~we slightly 

modify Schmidt?s orthogonalization process in order to generate purely 

polynomial functions: 
a 

~rlst.2ap ~ = Sil(~)~I2ap>- S~2(~)~I1ap > (22.12) 

w I 
~(2a,~) = fS a ~2 (S~2)2 = ~(ia,~).det S~2 (22.13) 

In the case of the three-dimensional representations/the third stand- 
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ard function is given by: 
~st.3ap> (22.14) 

a a 2 a a a a a a a a 
= ($11S22-(S12))<~J 3ap> -($11S23-S12S13)<~I 2ap> -(S13S22-$23S12) <~lap> 

$11 a $I 3 
with a _a , IS~I $12 

a l (22.25) ~22 - t _a a $23 ~(3a,~) = det _a l "ae I~22 $22 
a Is~2 ~22L s~i s32 s~31 

a 
The arrangement is such, that the scalar of the highest order $53(r) 
does not appear in the third standard function (22.14). 

We now compile the standard functions of the separate symmetry spe- 

cies: 

I) species Ai: 
(~Ist.A21 > i , ~(A~) = 24 (22.16) 

2) species A2: 

~st.A22 ~ = x 2 2 2_z2 

(22.17) 
3) species E: From (22.3) results: 

S~2=24(2S0(4)-Sc(2,2)), S~2=24(2S0(6)-$e(4,2)), S~2=24(2S0(8)-Sc(4,4)) 
(22.1s) 

and further: 
<~st.IE2> = 2z2-x 2-y2, <~st.IE2> = ~-3(x2-y 2) 

p(2E,~) = 24(2Sc(4) - $0 (2 ,2 ) )  ] ( 2 2 " 2 9 )  

/ 4 1 s t ' 2 E 2 >  = S~2(~>'VB(x4-y4) - S~2(ZO'~(x~-Y~) I (22.20) 
' = ~ 2  = : l ( s ~ 2 )  ~ ~(2E,~) = (Si2) 

4) species TI: From (22.4) results: 

S ~ ( ~ )  = 8 ( S c ( 4 , 2 ) - S c ( 2 , 2 , 2 ) ) ,  S~2(r--~ = 8 (2Sc(4) -Sc(2 ,2 ) )Sc  o 

T~ -- T4 r 8(Sc(4,4)-Sc(4,2,2)) (22.21) $22(r )  = 8 (Sc (6 ,2 ) -Sc (4 ,4 ) )  , $25(r-') = 

S~(r~ = 8($0(6,4)-Sc(6,2,2)), S~(~) = 8(Sc(4,2)-$0(2,2,2))Sc o 

and further: 
<~st.IT2~ ~ = (y2-z2)x and cyclic permutations 

(22.22) 
~(2TI,~) = 8(Sc(4,2) - Sc(2,2,2)) 

<~ist,~O = s~2(~.(y~-z~)yz ~2(~.(y~-~)x cyclic 1 
~(~.~) ° (~)~.~ - ~.(~h~ ~ ,(~'~ 

T4 ~ T42 2 2 3 ~ ~ ~ ~ . 22 
QI~st.3TI~>=(S22S22-(S22 ) ).(y -z )x - ($12S25-$22S25) (y -z )y 

-(S~ S~-S~ S~) • (y2-z2)x cyclic ~ 22.24) 5 5 
~(3T2, ~ = formula (22.15)  
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5) species T2: From (22.5) results: 

T2 
8r 2 S22(  = 4sc(2,2) 

S~(~ )  = 24xy~. 8~ (~ )  = 8Sc(4) 

and further: 

~st.IT2x > = x and cyclic permutations 

l~(1T2.~r ) = 8r 2 

~Ist.2T2x ~ = 8r2yz - 24xyz.x cyclic 

~(2T2, ~ T2 2 T2 ~T2 f~T2~2 
= (Sit) "$22- ~11-~12) 

<~Ist '3T2x > = f~T2~T2 , -T2,2 .  J ,sT2-T2 -T2-T2, z 
,~11~22-L;~12) ) x -  L 11~23-~12~13)y 

- -T2  -T2 -T2 -T2. 
- ~13s22-s23~12)x 

p,(3T2,r 4') = formula (22.15) 

= 8sc(6) } 
8r2xy z (22.25) 

(22.26) 

~ (22,27) 

cyclic }(22.28) 

22°2. Equivalent sets and their SALC coefficients 

After this general preparation~we come to the particular structures 

having T d symmetry. There are five different sets of equivalent posi- 

tions or other equivalent objects. These sets are: 

i) The central position invariant to all symmetry operations ~= (O,O,O) 

2) Four positions ~r on the three-fold rotation axes. These and the 

following positions are given in table 2. 

3) Six positions ~r on the two-fold rotation axes. 

4) Twelve equivalent positions ~r on the reflection planes. 

5) 24 general positions ~r apart from anyelement of symmetry. 

The position vectors in the latter two cases are not determined uniquely. 

For instancet~i=(b,c,c) with b~c and 2c2+b2=I would do. For the purpose 

of numerical calculation~we have arbitrarily chosen the vectors given 

in table 2. 

A I 

A 2 

A 3 

A4 

B i 

B 2 

B 3 

B 4 

B 5 

B 6 

O i 

Table 2. The position vectors 

x y z 

i / ' f3-- 1/~r3-" 1/g3- 
i , ~  - 1 / ~  -i/FS 

-il~rT I/~-IIWT 
0 0 I 

0 1 0 

i 0 0 

O 0 -1 
0 -1 O 

-1 0 O 

I l~f-~- I12 I12 

02 

05 

04 

05 

C 6 
07 
C 8 

09 

010 
01t 

012 

of the equivalent sets. 

x y z 

1/2 1/'~E" 1/2 
I12 I12 I/~ 

i/'¢T -1 /2  -1 /2  
-I12 II~T -I12 

-i12 -112 I/VT 
-II~Z I12 -I12 

-I12 -II~2- 112 
112 -I12 -I/~ 

-1A/-2" -112 i / 2  
1/2 -1/T'2- -~/2 

-1/2 1/2 -iA/-Z 
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X 

D 1 1/3 
D 2 1/3 
D 3 -1/3 
D 4 -1/3 
D 5 F~I3 
D6 -VTI3 

% -VT/3 
Dg V~13 
Dio -VTI3 
Dil -VW3 
DI2 ~ / 3  

Table 2. 

Z 

YTI3 VTI3 
-~13 -V¢13 
13-13 -~13 
-1T13 VTI3 
113 1T13 
-I13 V~I3 
-113 -1T13 
113 -V-¢13 

V3"-13 I13 
VTI3 -113 

-VTI3 113 
-V~-I3 -113 

The enumeration of the vectors of 

elements in table I. 

continued) 

x y z 

Di3 VW3 -I/3 -VT/3 
DI4 -F~/3 -I/3 VT/3 
DIS VW3 I/3 V~/3 
DI6 -VW3 I/3 -VT/3 
Di7 I/3 -VT/3 -/T/3 
DI8 -I13 /TI3 -VTI3 
Dlg -113 -VWI3 V~-I3 
D2o 113 V3-13 1T13 
D21 V~/3 -V-3/3 -I/3 

D22 7~-/3 ~/3 113 
D23 - ~ / 3  7~-/3 -1/3 
D24 -~'5/3 -~-3/3 1/3 
set D corresponds to that of the group 

These five se~ of equivalent objects induce the reducible represen- 

tations oO=AI, ~A, oB, oC and o D, Using the operations listed in table 

l?we oancalculate the induced matrices of ~A etc. according to (3.3). 

The calculation of the characters is even simpler, since they are equal 

to the number of positions being invariant to the operation. The char- 

acters of the irreducible and the induced representations are listed in 

table 3. 

Table 3. Characters of representations of T d 

A I 

A 2 
E 

T i 

T 2 

G o 

~C 

E 803 302 6S 4 6o d 

I I I I 1 

I I I - I  -1 

2 - I  2 0 0 

3 0 - I  1 -1 

3 0 -1 - I  I 

i I I I I 

4 I 0 0 2 

6 0 2 0 2 

12 0 0 0 2 

24 0 0 0 0 

From the character formula (2.10) then follow the branching rules 

for the induced representations: 

GO = AI ' oA = AI+T2, ~ = AI+E+T2, oC = AI+E+TI+2T 2 
(22.29) 

oD = AI+A2+2E+3TI+3T 2 

The decomposition of the representations according to these rules is 
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Table 4. 

SALC coefficients (~i~Aap) 

a p A I A 2 A 3 A 4 

achieved by the SALC coefficients. We calculate them by formula (12.16), 

i.e, by inserting the position vectors of table 2 into the standard 

functions (22.16-28). The results are listed in the tables 4 to 7. 

Table 5. 

SA~C coefficients (~ilBbp) 

A l l  

bp 

1 1 1 1 
~ ~ ~ A11 

T2x 

T2Y 

T2z 

Tc p 

A11 
El 

E2 

TI~ 

IT2x 

IT2Y 

IT2z 

1 1 -1  -1  

1 -1  - 1  1 

1 -1  1 -1  ~ ~ ~ TzX 

C i C 2 

B I B 2 B 3 B 4 B 5 B 6 

2T2x 

2T2Y 

2T22 

T2Y 

T2z 

Table 6. SALC coefficients (~i~CTcp) 

C 3 C 4 C 5 C 6 C 7 C 8 C 9 ClO Cll Ci2 

g g g ~ g ~ ~ g  

o o ~ o o ~ 

o ~ o o ~ o 

o o--~ o o 

o ~  o~-~ o 
o ~-~ o-~ ~ o ~ ~ o ~ 

-~ o ~ ~ o~~ o~ ~ o 
-~ o-~ ~ o-~-~ o ~ ~ o 

-i -~ I 

1 -I -~ 



8d p 

All 

A21 

:rE l 

IE 2 

2Ei 

2E 2 

2Ti~ 

2Ti~ 

3Ti~ 

IT2x 

IT2Y 

IT2z 

2T2x 

2T2Y 

2T2z 

3T2x 

3T 2y 

3T2z 

Table 7. SALC coefficients (~i~DSdp) 

D i D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Dio Dil Di2 

~ ~ . ~ ~ ~ ~ ~  

i l l l - i  - I  - i  - I  

i i i i -i -i -i -i g g g g o o o o g g g g 

T~ T~ I"2 T2 

~ ~~ ~ ~ ~ -~ o o o o 

o o o o ~ ~ ~ ~ ~ ~ ~ 

,~ ~ ~ o o o o ~ ~~ 

~~ ~ ~ ~ ~ ~ o o o o 

o o o o ~ ~  ~ ~ ~ ~ 

~ ~ ~ o o o o ~ ~ ~ ~- .... 12 

g~ T2 T~ T2 

i -i i -i 
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8d p 

All 

A21 

IE i 

IE 2 

2E I 

2E 2 

ITI~] 

2Ti~ 

2T.-t~ 

3T1¢ 

3T1~ 

IT2x 

IT2Y 

iT2z 

2T2x 

2T2Y 

2T2z 

3T2x 

3T2Y 

3T2z 

Table 7. (continued) 

Di 3. .Di 4 DI 5 DI6 Di7 Di8 DI9 D20 D21 D22 D23 D24 

F F F F F F F ~  ~F~ ~ F  

- i  -1  - i  - I  l l 1 l 

o o o o~~~~-~-~ ~ 

-~-~~~ F2 ~ F-~ o o o o 

F-~-~ ~ o o o o ~ ~ ~ ~  

o o o o ~-~-~~-F-F ~ F 

- ~ ~ ~ ~  ~-F ~-F o o o o 

F-F-F ~ o o o o - ~ ~ ~  
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By the help of the preceeding tables~ one c~ dete~ine the s.-a. MOs 

of every tetr~edral molecule arising from all types of atomic orbitals. 

T~ing the 3Jm s~bols from Griffith ~], table C2.1.1one calculates 

the coefficients K(ycPc,~¢e,aPa) according to formula (5.2). In the 
paper ~0] we already have elaborated the complete set of coefficients 

with respect to the e~ivalent set A (i.e. the P atoms of P4 or P406, 
the H atoms of CH4, and the lig~ds of m~y tetrehedr~ complexes). The 

most import~t AOs are those of species s/A i ~d p/T 2. Since the coef- 

ficients for the s-orbitals are trivially 

~(cq,Aia,A::) = 8(c,a)(~iAaq), 
we only repeat the coefficients for the p-orbitals in table 8. Because 

of different phases in the tables of Koster e.a. [21] ~d Griffith [5] 

we now get the opposite si~ for the triads (ET2T 2) ~d (T2T2T2). 

T~le 8. The coefficients K(cq, Aia, T2P) 

~ ~ i  A A 2 A A 
x yl z x y z x y3 z x y4 z 

acq 

I I I I AIT2x ~ 0 0 ~ 0 0 ~ 0 0 ~ O 0 

AIT2Y 0 ½ 0  0 ½ 0  0 ½ 0  0 ½ 0  

I I I I AIT2z 0 0 ~ 0 0 ~ 0 0 ~ 0 O 

T2AII ~-~ ~ ~ ~-~-~ -~-~ ~ -~ ~-~ 

1 - 1  I 1 ~ - ½ ½ o - ~ - ~ o  : : o  : : o  
~,~ o - ~  o~-~ o-g-g o g g  

~ -~ ~o ~ ~o ~-~o-~-~o 
~ o-~-~ o ~  o - ~  o~-~ 
~ , - ~ o - ~ ~ o - ~ - ~ o ~ ~ o ~  
~ -~-~o ~-~o ~ o - ~ o  

As a ~rther ex~pl%we calculate the coefficients K(cq,Bib,T2p), which 
are needed for the NOs resulting from the P/T2-orbitals of the oxygen 

atoms of P406. These coefficients are listed in table 9. The s~e coef- 
ficients apply to the symmetry coordinates of the molecule: 

~(Bb)c =~i(cq,Bib,T~P)'ABip , (~.~0) q 

where A~ = ~Bix,~Biy,~iz)~ is the displacement vector of atom ~2]. 
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AIT2x 

AIT2Y 

AIT2z 

E TI~ 

E Ti~ 

E T2x 

E T2Y 

E T2z 

Table 9. The coefficients K(cq,Bib,T2P ) 
B 

x yl z 

o~o 
0 O~ 

I y o o 

0"½ 0 

0 0 0 

V •  0 0 

o~o 
o 

B 2 
x y z 

o~o 
oo~ 

-½oo 
0 0 0 

oo½ 
~-~ 00 

o:~ro 

B 
x y3 z 

V •  O 0 

oo~ 
0 0 0 

o½o 
O 0-~ 

~ O 0 

o~o 
oo~ 

B I B x y4 z x y5 z 

o 

0 0 ~  

0 0 

0-~ 0 

O O O 

' •  0 0 

o~o 
oo.:~ 

oo~ 
!-~oo 
o 0 o 

0 0 ~ 

V •  0 0 

o~o 
oo~ 

B 6 
x y z 

0 0 

o~o 
oo~ 
0 0 0 

0 ½ 0 

0 0 " ½  

O 0 

o~o 
oo~ 

T2Ail O O V~ O V~ o ~ o o o o ~  o ~ o # 0 0  

T2E I 

T2E 2 

T2T~ 

T 2TI~ 

o½o 
o o-½ 
0 0 0 

½oo 
o o-½ 
0 0 0 

-½ 0 0 

0 0 0 

0 - ½  0 

i 
'2 o o 

0 0 0 

½oo 
0 0 0 

0 0 0 

-i 0 0 

0 0 0 

o-½ o 
-½ 0 0 

0 0 0 

0--12 O 

0 0 0 

"½ 0 0 

0 0 0 

½oo 

T2T2x 

T2T2Y 

T2T2 z 

0 0 

-½ 0 O 

0 0 0 

oo½ 
o~o 
0 0 0 

0 0-½ 

0-½ 0 

=-~oo 
-½ 0 0 

0 0 0 

- i  0 0 .~ 

o½o 
0 0 0 

i 0 0 

o½o 

22.3. Polyhedral isoscalar factors 

Whereas the elaboration of the s.-a. linear combinations of orbitals 

and coordinates is a conventional technique, we now come to the central 

point of our innovation, the group theoretical description of the topo- 

logical structures by the various polyhedral isoscalar factors. 

The four atoms of P4 occupy the positions ~ i given in table 2. The 

atomic orbitalsat these centres define two types of two-centre inte- 

grals distinguished by the edge vectors connecting the centres. 

~) Both orbitals are located at the same centre, i.e. the edge vector 

degenerates to ~AOi ~ - ~ ,  cf. page 2i. Here and in the following ~ = 
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the equivalence of sets, i.e. ~i~i for instance, implies such a nume- 

ration that ~ik(g)=~ik(g) in addition to the ordinary equivalence of 

the induced representations, ~N~. But this does not imply ~i=~l ! As 

shown in section 3, this equivalence, ~ ~, leads to (M i~Mpmp) = 

(Ni~NPmp). This means in the present case: (~i~O ~aPa ) = (Ai~A~aPa). 
A Since ~i belongs to position-* A i only, the topological matrix (3.1) is 

given by: 

'-AA0'~ 8(i,k) 8 ( k , 1 ) / ~  (22.31) 
• ~ ikl ) = 

2) The orbitals are located at different centres. In contrast to set B! 

there is only one type of coordination within the set A indicated by 

the edge vectors ~ik=Ai-Ak . These twelve vectors lie in the reflection 

planes and therefore we have the equivalence ~ SA~ oC. An adequate enu- 
#A -~ meration of the edges then allows S k ~ C k. This correspondence can be 

made explicit by an appropriate choice of the coefficients in the rela- 

tion (3.25): ~=~+p~. If we take p~=(l+~)~/4 and p~=(-l+~)~/4, 

we get S~2=C i etc. We now define the topological matrix of the trian- 

gles -AAS A by: ~'-AASAikl J = 6(~1~i+P2~k,~l)/~ j (22.32) 

or equivalently A 
~--- ,-AAS 

i l, 
The topological correlations expressed by (22.31 and 32) are listed in 

table 10. 

"-AAoA and -AAsA 
Table IO. Non-zero matrix elements of zt ikl J ~( ikl ) 

S A ~ C I I OIA~ A1 Ak 

i 2 3 4 1 I I 2 2 2 3 3 3 4 4 4 
r 

i 2 3 4 2 3 4 I 3 4 I 2 4 I 2 3 

I 2 3 4 I 3 2 4 11 9 6 8 10 5 12 7 

Basing upon these correlations~we calculate the polyhedral isoscalar 

factors of the triangles -AAo A and -AAS A according to formula (6.6). 

The result is compiled in table 11 on the following page. It differs 

from that of Ill] because of the different SALC coefficients of table 6 

and the different order of the triple product axbxc. 

In the same wayTwe treat the equivalent set B. The six centres listed 

in table 2 are occupied by the oxygen atoms of P406 o There are now three 

types of coordination within this set: 

I) The orbitals are located at the same centre again, i.e. the edge vec- 
B ~ N ~ tore are ~k=~k-Zk ~k" The topological correspondence is quite analo- 

gous to (22.3i): ,-BB0~ 8 ( i , k )8 (k ,1 ) /~ -~  (22.34) 
• t ikl ) = 

2) The orbitals are located at adjoining centres (for instance ~I and 
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Table ~. Polyhedral isoscalars PIs('fiO~ 

a b Tc  -AAOA(al~.) -AAOA(num.) 
A~A~ A i &/4 O. 25000000 

T2T 2 A~ V~-/4 O. 43301270 

I-AAsA 
and PIs ab~ ! 

-AAsA(al~.)-AAsA(num.) 

~/4 0.25oooooo 
-~3-/~2 -0.~4433757 

T2T 2 E - - -~/~'~ -0.40824829 

T2T 2 T~ - - ~/2 O.5OOOOOOO 

AIT21T 2 

T2AI~T 2 

T2T2~T 2 

AIT22T 2 

T2AI2T 2 

T2T22T 2 

~ / 4  O.433Ot270 
~- /4 0.4330~270 

-~-~/4 -0.61237244 

m 

(~-2-2)/8 -0.07322330 
(~-~+2)/8 0.42677670 

~/4 0.25000000 

-(~-2+2)/8 -0.42677670 
- ( ~ - 2 ) / 8  0.07322330 

-~/4 -0.25000000 

• B  ). The 24 edge are S~ are equivalent D: vectors termed and to the set 

~ D I. The description of this topological correspondence is compli- 

cated by the fact that the vectors ~IBi+~2Bkhaving one zero component 

may be equivalent but not equal to a vector of set D. In order to pro- 

duce an identit~ we resort to a certain vector product, which is well 

defined with respect to the group Td: 

= ' 2 + (xy+yx)  (22.35) ~F~?S+ (yz+zy)e I + r i 

The definition 

yields ~I=~I etc. The full llst of the correlations is given in then 

table 12, which also indicates the non-zero matrix elements of the top- 

ological matrix: 
,-BBS~ ~ ~ --* -* 

An equivalent expression is: 

3) The third possibility is the location of the orbitals at the oppo- 
-4) 

site positions~= -~ like B i and B 4. The six edge vectors of this type are 

termed T ~  k and the topological matrix is in this case: 

~-BBT~ 

The essence of (22.34/57/59) is gathered in table ~2o This compilation 
then allows the calculation of the isoscalar factors of the triangles 

of the type -BBO B, -BBS B, and -BBT B. These are listed in the tables 13 

and 14. 
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,BB0{ ,BBT, B and "BBS'B 
Table i2. Non-zero matrix elements of ~ ikl'' ~k ikl ), ~k ikl ) 

B i i 2 3 4 5 6 B i i 2 3 4 5 6 B i i i i -t I 

:I O~'~B 1 t 2 3 4 5 6 TIB,,'B1 I 2 3 4 5 6 sB'vD1 t i5 4 i 

BB~---~--~ 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 ~I 

f B k i 3 4 6 i 2 4 5 2 3 5 6 i 3 4 6 i 2 4 

20 5 i9 6 9 22 It 24 3 16 2 i3 18 8 i7 7 tO 23 i2 2i 

Table 13. Polyhedral isoscalars Pls( -BBO~abcs and PIs(-BBTBabc ) 

a b c 

AiAIA i 
E E A t 

T2T2A i 

AtE E 

E AtE 
EEE 

T2T2E 

AIT2T 2 

T2AIT 2 

E T2T 2 

T2E T 2 

T2T2T2 

-BBOB(aI6.) -BBOB(num.) 

i/6 0.16666667 

~f/6 0.23570226 
~/6 0.28867513 

~-/6 0.23570226 
~-2 /6  0.23570226 

-~-2/6 -0.23570226 
- l /~-~ -0.40824829 

~-~/6 0.28867513 
~-3 /6  0.288675i3 

- I /~ '~ -0.40824829 
-i/~-6"- -0.40824829 

0 0o00000000 

-BBTB(aI6.) -BBTB(num.) 

I/6 0.16666667 

~-2/6 0.23570226 
-V~/6 -0.28867513 

V-2-/6 0.23570226 

~-2/6 0.23570226 

-~/6 -0.23570226 

I/~ 0.40824829 

-~-~/6 -0.28867513 
~'3/6 0.28867513 
1 / ~  0.40824829 

- l /~g- -0.40824829 
0 0°00000000 

/-BBSBI 
Table i4. Polyhedral isoscalars PIs| ? I 

I abc I 

a b Tc 

AIA I A i 
E E A t 

T2T 2 A t 

al6ebraic numerical a byc 

I/6 0.16666667 E T21T i 

-~/12 -0.I1785113 T2E IT i 

0 0.00000000 T2T21T 1 

E E A 2 -~'C/12 -0.20412414 

AIE IE 

E AIIE 

E E IE 

T2T21E 

AtE 2E 
E AI2E 

E E 2E 

T2T22E 

0 0.00000000 
~'E/i2 0.204i2414 
~W/12 0.20412414 

0 0.00000000 

- ~ / 6  -0.23570226 
V-~/t2 0.11785113 

- ~ / 1 2  -0.11785ii3 
0 0.00000000 

E T22T i 

T2E 2T i 

T2T22T i 

E T23T 1 
T2E 3T I 

T2T23T i 

AIT21T 2 

T2AIIT 2 
E T21T 2 

al6ebraic numerical 

~-/6 0.28867513 

~-~/12 0.18633900 

-i/12 -0.08333333 

0 0.00000000 

-~-/12 -0.14433757 

-V~/12 -O.32274861 

-~-~/i2 -0.20412414 
1~'O/12 0.26352314 

- ~ / 1 2  -0.11785113 

~/6 o.i6666667 
V-~/18 0.21516574 
~"Z/i2 0.i1785113 
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a b yc 

T2E IT 2 

T2T21T 2 

AIT22T 2 

T2A12T 2 
E T22T 2 

T2E 2T 2 

' Table 14. (continued 

al~ebraic numerical a b yc 

~/36 0.15214515 T2T22T 2 

-V~-/12 -0.11785113 AIT23T 2 

0 O.OOOO0000 T2AI3T 2 

-~/12 -0.11785115 E T23T 2 

0 0.O0000000 T2E 3T 2 

-I/12 -0.08333333 T2T23T 2 

alsebraic numerical 

-V'~/12 -0.32274861 

-~2-/6 -0.25570226 

~/36 0.15214515 
-I/6 -0.16666667 

~T~/36 0.10758287 

-I/12 -0.08333333 

In the molecule P406tthere are further triangles (or two-centre in- 
tegrals) involving one position of set A and one of set B. The edge 

~AB vectors between directly adjoining centres are termed Sik =~i-~ (for 
instance ~ and ~I )' whereas the indirect connection (for instance be- 

tween ~ and ~4 ) is expressed_̂ ~ ~^~ _~bY ~i B =~i-~" There are twelve vectors 
in each set and thus ~T~l. The topological matrices are given by: 

,(-ABS  (2240) 
ikl ~ = 

-~TAB 8 ( ~ -  (~Z-I)~, 2~)/GCG;' (22.4~) 
~( ikl ) = 

The correspondences defined in this way are compiled in table 15. 
-ABS AB -ABTff 

Table 15. Non-zero matrix elements of ~( ikl ) and ~( ikl " 

:sIABA~ i I I I I I 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5- 4"4 I 

NO 1 - - - 3 2 1 9 II - - - 4 - 8 10 6 - - 12 - 7 - 

Finally t the polyhedral isoscalar factors calculated from these cor- 

relations are given in table 16. 

Table 16. Polyhedral isoscalars and Plsl ~' / 
PIe i abc / ~ abc I 

a byc 

AIA I A I 

T2T 2 A I 

~6/12 0.20412414 

~6/12 0.20412414 

-ABT AB ( al~. ) -ABT AB (num.) 

~6/t2 0.20412414 
-~6/12 -0.20412414 

AIE E ~5/6 0.28867513 ~3/6 0.28867513 

T2T 2 E -~3/6 -0.28867513 ~3/6 0.28867513 

T2E T i ~2/4 0.55355339 ~2/4 0.35355339 

T2T 2 T I ~2/4 0.35355339 -~2/4 -0.35355339 

I /4 0.25000000 
(f6+~3)/12 0.34846171 
(~3-~6)112 -0.05978658 

A~T21T 2 

T2AIIT 2 
T2E IT 2 

-1/4 -0.25000000 
(~6+~3)/12 0.34846171 
(~5-~6)/12 -O.O5978658 
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a b yc 

T2T21T 2 

AIT22T 2 

T2AI2T 2 

T2E 2T 2 

T2T22T 2 

Table 16. (continued) 
-ABsAB(aI~.) -ABsAB(num.) 

-I/4 -0.25000000 

-I/4 -o.25oooooo 
(~FE-~)/12 0.05978658 

(V'3+~)/12 0.3484617~ 

-I/4 -o.25oooooo 

- BT AB (als,.,,) -ABT AB (num.), 

1/4 0.25000000 

i/4 0.25000000 
(Vw-V~)/12 0.059v8658 
(V~+V~)/12 0.34846~v~ 

1/4 0.25000000 

In contrast to the edge vectors connecting centres of the same set, 

S A for instance, we have to consider S AB and the set of the inverted 

vectors S BA as sets of inequivalent objects. But both set induce the 
~BA ~ ~-~ same representation ~C and an appropriate numbering yields ~l~l NUI" 

~BA ~AB~ • The same applies to ~l ~Wl u 1. We therefore may choose 

 -BASB  and "-BATB   TAB 
~ ikl ~ = ~ kil J ~ ikl J = ~(-kil )' (22.42) 

which yiels simple relations of the polyhedral isoscalar factors: 

pBAsB  I-ABsABI I-BATB  I-BA BAI 
PIs| ~ |= {abc~-PIsl Y ~, I ba~ |=~abo)'PIs~ Y I (22.43) 

~ bac ! I abe I PIs l ~ bac l 

At this point one may ask, whether the choice of the topological ma- 

trices is unequivocal. Indeed, the matrices are not determined unambig- 

uously, but a different choice of the topological correlations causes 

only a unitary transformation of the polyhedral isoscalars (a change of 

phase in the multiplicity free cases). We demonstrate this by an exam- 

ple. If we replace (22.40) by 

~ ikl ) = 

the first correlated triple, for instance, is AI,BI,C6 instead of At, 

BI,C 3 and we mustrearrange table 15. The resulting new polyhedral iso- 

scalars are related to those of table 16 bY the transformation 

PIs(-AB~ABI=abc I ~ /-ABsABI 
u(c)~PIsl ~ I (22.45) 

~ i abc / 

with u(A1)=+1 , u(E)=+I, U(TI)=-I , u(T2)11=u(T2)22=0, u(T2)I2=u(T2)21=-l. 
Similar relations~caused by different correlations between the same 

sets~are found by inspecting the tables 13 and 16: 

-BBoB • P's'-BBT~ ' -ABsAB ) I -AB ~ AB) 
PIs(abc) = ~(b) i ~ abe J, Pls I ~ = ~(b).Pls. _ (22.46) 

abc ~ abc 
wlth the phase factors ~(Ai)=+I , ~(E)=+I, and ~(T2)=-I. 

The factors calculated so far also apply to strucures like Be4CI 4 

and __[Cu(CN)4]2-, where the positions of type A occur twice, let us say 

A and ~. The isoscalars within the set ~are trivially equal to those 

of set A. There are two types of edge vectors connecting centres of 
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both sets. If both centres lie on the same axle, we nave u i =Ai-A i A i- 

In the other case the distance vectors ~A~ induce the representation ~C 

and therefore ~lAA[~l . From these equivalences follows: 

1 ikl) = Pie(ikl) , PIS:-ab: ~ I = : abc I IS[ 

The molecule C(CH3) 4 requires the additional calculation of the poly- 

hedral isoscalars involving the positions of set C. 

22.4. Polyhedral isoscalar factors of the second kind 

The next step is the consideration of the triangles subtended by 

three atomic centres. Within the scope of this principal case stud~ we 

calculate the complete set of polyhedral isoscalars of the second kind 

involving three centres of type A. With regard to the main application 

of these isoscalars in (8.14)tone can confine the calculation to the 

subclass (8.i5). In set A~there are five different types of triangles 

corresponding to possible three-centre integrals: 

I) All three centres coincide. We mark these "'null triangles" by ~. 

There are naturally four triangles of this type, i.e. iNAi . The topo- 

logical matrices of the second kind according to (7.i6) correlate each 

triangle with its second vertex A i and with the edge vector connecting 
~A the first and third vertex, i.e. with Oil 

~2.~0AA. .-AAO~ 8(i,k)8(k,1)/~ (22.48) 
~i°k 1 J = ~ ikl ) = 

2) The first and the third centre coincide. These degenerate triangles 

~ correspond to the edge vectors connecting the first and second cen- 
u 

~A ~A~ and A A 
tre, i.e. ~oi ~I ~I ~,X 0 A, ,-AAS~ (22.49) 

lick 1 ) = ~i kli ). 

3) The first and the second centre coincide. This set is termed [~: 
IA ~A~ 11 ~I ~I again. In this casepit is easier to express the correlations 

in a first step by the topological matrix (7.7) and to calculate a by 

the inversion of (7.17): 

~sc~ ~ACB -~s 
-irm- = ~(i::m: )~( ~lr )~z(-ABs)" (22.50) 

In the present case we have 

,[~AAA ~ A AS A 
• <ilkml ) = ~(-kli)8(k,m) (22.5~) 

and (22.50) yields: 
~2 (~sAA~ = ~ - -A AA-A A ~ 

:(-m~):(-mI~)~Z(-AAS ) (22.5:) 
'i'r m" T li 

The non-zero matrix elements taken from table IO are given in table 17. 

4) The second and the third Oentre coincide. This set Z~ different, i s 

toil, A ~ i.e. ~21~~l . In this case~the correlations are but equivalent 

given by 
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8(m,l):(- _~) "~i~kml ' k~i 

and via (22.50) by 

~2 ~sAA~ = [~(-AAS~{-AAS~z{ AAsA~ ~ 
(i~r m ) ~ ~ kmi' ~ kmr'" ~- ' 

(22.55) 

(22,54) 

(22.s5) 

The result is again compiled in table :7. 

5) Finally there is one set of 24 ordinary triangles termed~Awith 
A -~ ~m~Dm" In the sense of (7.8)f the correlation Of the triangle (i.e. the 

number of D) and the vertex numbers is achieved by the linear combina- 

tion of the pos i t i on  vectors ~:Ak+~2Am+~3~l w i th  ~=( :+~) /2~C~,  ~2 = 
(:-V~)/2V-3-, and d3=(V~-~)/2V~, we therefore define the topological ma- 

trix by ,AAAAA~ i -~ I ~ J -* -~ 
~ki kml )= 6(~:Ak+~2Am+~3Al'Di )/~C5~ 

With (22.52) eq.(22.50) results in: 

(i r m ) = ~6(~:Ak+~2Am+~3:'Di)8(~IAk+~2Tl'Cr)/~ 

These correlations are listed in table :8. 

Table :7. Non-zero matrix elements of ~2 (~sAA)'i-r m" and 2 (i2r[ASAAm) 

A m~ :::I:i22 22 2 233 33 3 3444 4 4 411 

::c°i :23 ~ - ~:: --~ -~ : o  --57 - - :2 I 

~:i~Oi - - - i 2 3 4 - i: 9 6 - :0 - - 8 5 - - :2 7 -: 

(22.56) 

Table i8. Non-zero matrix elements of 2 (~AsAA) 
"i rm- 

Am I.:I. : : l :  12 2 2 2  2 3 3 3  3 3 3 4 4 4 4 . 4  43i 
A .,.~ ~ r Url 8 II 12 9 7 iO 3 6 2 5 7 4 I 9 12 2 5 4 i 8 li 6 

I A~'DiI::,  : 7 : 6 2  ~ 2 4 ~  :4 2 0 : 0  23 7 22 ,-3 3 9 :~  2 : 5 : 9  12 4 : 5  

From (7.22) now follow the polyhedral isoscalar factors of the sec- 

ond kind. Because of (22.48 and 49)j the factors of the triangles ~A and 

~o A are very simple: f~AoAA ~ = Pie(-: A 0 A 
Pie 2 c ) (22.57) ~a b c' 

Pls 2 = PIe (22.58) 
~abc! bc 

There remains the tabulation for the triangles ~:, ~:, and A A. It is 
given in the tables 19 and 20. Comparing the entries of table 17,we get 

the following r@lation, where the unitary matrix is that of (22.45): 

i zAsAA 1 JE ASAAI 



110 

Table 19. Polyhedral isoscalars Pls z: 

~a #b c 

A i AIA i 
AIIT2T 2 
AI2T2T 2 

E E A I 

E TIT 2 
E IT2T 2 
E 2T2T 2 

T i TIA i 

T I E T 2 
T i TIT 2 
TIIT2T 2 
TI2T2T 2 

IT2tT2A I 
IT22T2A i 

IT 2 AIT 2 
IT 2 E T 2 

IT 2 TiT 2 
IT21T2T 2 
IT22T2T 2 

2T21T2A i 
2T 22T 2Ai 

2T 2 AIT 2 
2T 2 E T 2 

2T 2 TIT 2 
2T 21T 2 T 2 
2T22T2T 2 

z:sAA(alg.) [:sAA(num.) 

~"-/12 0*14433757 
(2~+~'g)/24 0.24639964 
(2~-5-~-6)/24 0.04227549 

~K/12 0.204i2415 
1/4 0.25000000 

(~7T-2~-3),/24 -0.04227549 
(~-~+2~-3)/24 0.24639964 

I/4 0.25000000 
-1/4 -0.25000000 

~'~/8 0.17677670 
(1-~20/8 -0.05177670 
(I+~-~/8 0.30177670 

1/4 0.25000000 
0 0.00000000 

(~'~+2~-5)/24 0.24639964 
(~-6-2~/24 -0.04227549 
(I-~-~)/8 -o.05177670 

-(4+~P2)/16 0.33838835 
-~2-/16 -0.08838855 

0 0.00000000 
1/4 0.25000000 

(2~-~-~)/24 0.04227549 
(2~+~-g)/24 0.24639964 
(i+~)/8 0.30t77670 

-~-~/16 -0.08838835 
(4-~)/16 0.16161165 

[AsAAI [AsAA~ 

ab c/ la b cl 
}-AsAA(alg. ) r:sAA(num. ) 

~-/I2 0.14433757 
(~6--2~-3)/24 -0.04227549 

-(~-C+2~)/24 -0.24639964 

~6-/12 0.20412415 
- 1 / 4  -0.25000000 

-(2~'~+~6)/24 -0.24639964 
( 2 ~ - ~ ) / 2 4  0.04227549 

-I/4 -0.25000000 
-I/4 -0.25000000 

-~'~/8 -0.17677670 
-(I+~'~/8 -0.30177670 
-(I-~)/8 O.O5177670 

0 0.00000000 

-1/4 -0.25000000 
(~+2~) /24 0.24639964 
(~-2~-3)/24 -0.04227549 
-(i-~C2)/8 0.05177670 

~-2/16 0.08838835 

(4+V~)/$6 0.33838835 

-1/4 -0.25000000 
0 O.OOOO0000 

(2~-~-~-E)/24 0.04227549 
(2~÷~-6)/24 0.24639964 
-(i+~C~)/8 -0.30177670 
-(4-~)/16 -0.16161165 

~-2/16 0.08838835 

a / ~AsAA 1 
i o oa, l a 

5a #b c 

A i AIA I 
AIIT2T 2 
AI2T2T 2 

A 2 TIT 2 

IE E A i 
iE IT2T 2 

al~ebraic numerical ~a ~b c 
' I 

~/12 O.14433757 IE 2T2T 2 
-V-~/24 -O. I0206207 iE TIT2i 

~/24  0.10206207 2E E A i 

~/12 O. 20412415 2E IT2T 2 

~-2-/8 0.17677670 2E 2T2T21 
(2+~'2)/t6 0.21338835 2E TiT 2 

al~ebraic numerical 

-(2-~'2)/16 -0.03661165 
-~5~/24 -O.O7216878 

~-~/24 0.10206207 

(~-3)/87-~ -0.08092433 
-(~+3)/8~-6 -0.22526189 

1/8 0.i2500000 
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~a pb c 

iT I TtA I 
IT i E T 2 

iT I TIT 2 

iTItT2T 2 

iTi2T2T 2 

2T I TIA I 
2T I E T 2 

2T i TIT 2 

2TIIT2T 2 

2TI2T2T 2 

3T1 TIA i 

3T i E T 2 

3T t TIT 2 
5TIiT2T 2 

3TI2T2T 2 

JT2iT2A l 
iT22T2A l 
IT 2 AIT 2 

IT 2 E T 2 

IT 2 TIT 2 

IT21T2T 2 

IT22T2T 2 

2T21T2A I 

2T22T2A i 

2T 2 AIT 2 

2T 2 E T 2 

2T 2 TIT 2 

2T2IT2T 2 

2T22T2T 2 

3T21T2A i 

3T22T2A i 

3T 2 AIT 2 

3T 2 E T 2 

3T 2 TIT 2 

5T21T2T 2 

3T22T2T 2 

Table 20. (continued) 

alsebraic numerical 

~ I + 2 ~ / 2 4  
(-1+2~-3)/24 

(2~-~-2-2~-g)/48 
(-1-2~-~-2~+~-~-2~/48 
(_t+2-V--g'_2~'~-_-tF~'_2-{~')/48 

0.18600423 

0.10267090 

0.00023671 

-0.25877O91 

-0.11357233 

1~-5/24 
-1~-5/24 

-(~-6+2~-~/48 
(-IyT~+2~-+~6)/48 
(-I~i"¢+2~-~5)/48 

0.16137431 

-0.16137431 

-0.21617094 

0.10559050 

-0.12262724 

(~-2-~'~/24 
-(~+~)/24 

( - t + 2~-5+~,~ )/24 
( 2 ~ - ~ -  2 ~ + 2 + ~ ) / 4 8  
( 2"~+'~-+ 2 I"~'G+ 2 - ' ~ / 4 8  

-0.0431365~ 

-0.16098764 

0.21684112 
0.00364213 

0.22402877 

(1+~-3+1~)/24 
(1+~-i~-0)/24 
(~-3-~) /36 

(~-~-3~+2~)/72 
-(1+~-~)/24 

(~+2-2~-~+~g)/48 
(~-2+2~+~-~)/48 

O.245597O2 
-0.01792612 
-0.14280368 

0.12724028 
O.I1383545 

O.O4999170 

O.II099594 

(3~-2~)/48 
(3~+2~)/48 
( ~ + ~ / 2 4  
(~-5-2)/24 
~U/48 

(-~-~5)/48 
(-~+~5)/48 

0.04194008 
0.18627765 

O.19068713 

0.00983617 

0.I1410887 

-O.194796O2 

0.O3342171 

(~-2~+2~)/48 
(~-~-2~-2~/48 
(~+6~-~) /72 
(~+6+2~)/72 
(-~+2~w)/48 

(1+~+2~-2~)/48 
(A-~-2~-c-2~)/48 

0.O2057021 

0.16576879 

0.07579924 

0.21497247 

0.07259929 

0.O8018940 

-O.18286051 
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2~. Case study: Matrix elements 

In this sectionlwe apply the structuralcoefficients of the preceding 

section to the reduction of matrix elements. We begin with relations re- 

ferring to no special type of AOs and procede step by step from the re- 

duced matrix elements of the s.-a. MOs to the rotational invariants be- 

longing to the integrals of GTOs. Since the representation of one AO by 

a sum of GTOs having the same angular momentum quantum number only en- 

hances the complexity without further systematic insight, we shall con- 

fine each AO to one GTO. Because of clearness~we also take the simple 

example of the molecule P4" The MOs of this molecule involve s- and p- 

orbitals: 

< tAiooo> = ~74~'exp(-= 2 IF-£i 12 ) (23.t) 
<r~ AiOim> = - 2i. exp ( _~2 i~_~ i 12 ). ~ i~_~ i l.yi m ( ( r-~_A~ ) / i r-~_~ I ) ( 23 • 2) 

These orbitals transform according to the representations A I and T 2 of 

the group Td: 

IAiOOA11> = IAi000> (23.3) 

IAiOIT2P~ = I IAiOlm>~mltT2P> (23.4) 
m 

From these AOs we build up the s.-a. MOs 

~(Ae,OOAi)ePe> = ~(~ilAePe )o IAiOOAII > (23.5) 

with e=A i or T 2 according to (22.29), and 

I(Ae,0tT2)cP ~ =~K(cpc,Aie,T2P), IAiOl~2p > (23.6) 
lp 

with e=A i or T 2 again and c from the product e x T 2. This means c=T 2 if 

e=A i and c=Ai, E, Ti, T 2 if e=T 2. The coefficients are given in table 8. 

23.1. Step one: From the reduced matrix elements to BRMs 

We now have to calculate three types of invariants of the molecular 

Hamiltonian H=T+QA.V A. The potential operator is defined in (8.i0). The 

invariant s are: 

I) <( Ae, OOA 1 ) ellHII(Ae, OOA I ) e> 

2) <(Ae, OIT 2) clIHII (Af, OIT2) c > 

3) <(Ae, OIT 2 ) clIHII(Ac, OOAI ) c> 

Since the Hamiltonian is a scalar operator, (5.13) applies reading 

now: 

<( Ae, nala a ) c ~H 11( Af, nblb b ) c> ( 23.7 ) 

= ~GEO I ( Aa, Ab ~ e c, fc ! Sok) ( Anala~l HII Anblbb ) Sok 

with the geometrical factors 
(23.8) 

GEOt(Aa'Ab~ec'fc~S°k) "e f+k +" [-A A S 1 
= {c+fb}{ab+k}~Z(-AAS)dimc/dimk;~b+a+c+]'PIs[ e+f ~1" 
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Of course, these factors are in dependent of the special AO quantum num- 
bers na, la, nb, lb,and of the exponential parameters. 

The involved BRMs are 
in case i): (AOOAIIIHIIAOOAI)sk with Sk = oAAI and sAAI, 

in case 2): (AOIT~I~IAOIT2)s~ k with S~k = oAAI, oAT2 , sAAI, sATI, SAIT2, 
and sA2T2 , 

in case 3): (AOIT211HIIAOOAI)so k with Sok = oAT 2, sAIT2 , and sA2T2 . 
The geometrical factors of the relation (23.7)tcalculated by (23.8)! 

are listed in the tables 21-23. 

Table 21. The geometrical factors GEOi(AAI,AAitec,fctSk) 

e c e ~  oAAI sAAI 

I,  IAi i /2 

TzTz, TZT z ~-/2 -i/2 

Table 22. The geometrical factors GEOI(AT~AT2~ec,fc~Sok) 

T2Ai,T2A i 

T2E ,T2E 

T2TI,T2T i 

T2T2,T2T2 

AIT2,AIT 2 

AIT2,T2T 2 

T2T2pAIT2 

sA2T2 

~ / 6  - ~ / 6  -116 -i/,3 113 i /6  - t /6  

~-/6 1/6 -~F~/6 - ~ / 3  - ~ / 6  -~-2/12 ~-~/I2 

i /2  ~-~/i 2 - ~ / 6  ~~/6 ~~/6 -~3/12 ~~/l 2 

1 / 2 -~/-6"/I 2 -~/~5"/6 ~-3-/6 -~-/6 ~-/I 2 -~/3-/I 2 

I /2  0 ~'~/2 0 0 0 0 

o ~-/6 o o o _ ~  - _~.~ 

o "C~/~ o o o 4 ~ '  - ~  

Table 23. The geometrical factors GEOI(AT2,AA~ec,fc~S~k ) 
Sokl oAT2 sAIT2 S~2T2 

e c t f  c ~ J  " , 

T 2Al, AIA I ~-/6 (~-Z+ 2 )/41/;5 - - (~g2- 2 )/4~- 

A~T2,T2T 2 ~-/6 (~'-Z- 2 ) /4~-  - (~-2+2)/4~'3 

T2T2,T2T 2 -~' /6 ~-~/6 -~'T/6 

Using these factors~an example of the relation (23.7) is given by: 

<(AT2,01T2)TIIIHM(AT2,OIT2)TI> = (I/2).(AOIT2[IHIIAOIT2)oAAI 

+(~-6/12). (AOIT2HH~AOIT2)oAT2 -(~/6). (AOIT211HIIAOIT2)sAAI (23.9) 

+ ( V3-/6 )- (AOIT 2 II~IIAOtT z) SA~ + (~ - /6 ) .  ( AOI ~ 2rl H IIAOI T 2 ) SAT 1 

-(~-/12) • (AOtTz,HIIAO1T 2) SA1T2 +(~"~/12) • (AOi~211HIIAOIT2)sA2T2 
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The same analysis applies to the reduced matrix elements of the over- 
lap matrix. We only have to cancel the Hamiltonian in all relations of 
this subsection. The energy eigenvalues of the symmetry species E and 
T: then simply are: 

~(AT2,01T2)cI~HII(AT2,01T2)c ~ 
• E ( e ) =  4(AT2,01T2)olI(.:T2,OIT2)c ) with c=E, T i (23.10)  

Since the species A i and T 2 occur twice and thrice, there remains a two- 
or a three-dimensional eigenvalue problem in these cases. 

23.2, Step two: From BRMs to TRMS 

The improper BRMs of the potential operator V A are further related 
to the TRMs of the triangles ~A, ~A, ~:, ~:, and ~A by formula (8.14). 

More precisely we have the following relations (23.11) and (23.12): 

( Analaall VAil Anblbb ) oAk 

)" (Anala a UAr -II~ Anblbb) AT k 
= ~y ~.Pis2(~ oAA (23.ii) 

k A I 
where the summands are determined by the (degenerate) triangles sharing 
the (degenerate) edge O A, i.e. ~y= ~A, ~:i, andS-A2. The coefficients 
of this relation are listed in table 24. 

Table 24. The factors ~TZ-~-~-PIs k Y k A I 

Ai I i ~ - 

~2 1 V: (VT+~:)A: (f~-Vw)/V: 

The corresponding relation referring to the edge S A is given by: 

(Analaa~VA~AUblbb)sA~k 4 osAA I (23.12) 
=~y ~ 12"Z (A)"PIs2 (kY "(AnalaaUAr': llAnblbb) Ayk ! 

k All 
where now ~ = )-:, ~-:, ~A and y=1, 2, 3. The coefficients of this rela- 
tion are listed in table 25. 

I A SAA 1 
Table 25. The factors ~12-Z(~)'.PIs zlkY ~ AI] 

A I i i V~ 

:E ~ V: : 
2E - - i 

IT I 

2T I 

ff -VB- (:+VY:)/f: 
- - 21V~ 
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i 

Table 25. (continued) 

3~ i (~-~)/3 

li~ 2 yT o (i+VT+fi-6)/1"6- 
12T 2 0 -~ (~-V~)/~ 

:~:~2 - - (:~-/T~+V~6) IV -~  

21T 2 

22T 2 

23T 2 

o -V3- (I+IT-IT6) I~-g- 
IT o (I-¢+f~) If-~ 
- - ( i- Ifi-~-fi-6) I 11~I2 

Applying these results,we give an example of (23.12): 

( AOIT211 VAIl AOIT 2 ) S~ I = ~-~. (~OIT 2 liAr-ill AOIT2 )~-~T i 

-V-~" ( AOIT 211Ar -ill AOIT 2 )Z2AT I 

+2~. (AOIT211Ar-ill AOIT2)AA2T i 

(23o13) 

+((l+~-~)/~)'(AOl~zllAr-lllAOi~z)aAl~l 
+((l-~)ArD'(A01~zll~-lIIAOl~z)~X~ l 

23.3. Step three: Ab initio calculation of BRMs 
In the case of proper BRMspwe can relate them to the rotational in- 

variants of the two-centre integrals according to formula (15.2). Be- 
cause of (12.14), this formula reads for a scalar operator: 

(AnalaaIITI~Anblbb)s~ e = (_i)la+lb.~ 

/l~lbJ I 
• ~c(SEe, j).S j .Is la+b el. ~nal~l -s a,~llnblb> ° 
0 

The expansion coefficients c(See,j) are listed in table 26. 

Table 26. The coefficients c(See, j) 

BI e |~ c(SBe.j) S Be ,~ c(SBe,j) 
0 A Ai,O 2/4~-~ sA2T2,1 Ii~ 
0 A e ,j>O 0 S A E ,2 

sA Ai,O ~ sAlT2,2 -~57~ 

SAi~2,1 iVS7T~ sA2~2,2 VTF/~E 

The soecial cases of (23.14) are: 

(A00AIII ~ IIA00A~.) 0AAI = 2. <~ooIIo °,~ Iloo> ° 

(A00A ilI~ IIA00A i) sAAI = IFiT. <~00U-s A°, ~I100> ° 

(A01~ 211 ~ nA00A i) 0A~ 2 = 0 

(A01~211~IIA00AI)sAI~2= -3rE. (01u-sAI,~II00>I.sA 

(A01~211~IIA00AI)sA2~2= 3f~-. <oIII-sAi,~IIoo>i.s A 

(23.14) 

(23.15) 

(23.16) 
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(AO~T211TIIAOIT2)oAA1 

(AOIT211T AO1T2)oAT2 

(A01m211mlPOlm2)SAA~ 

(Aoim211mflAoim2)sA s 

= 2. (o l l lo ° ,  mllol> ° 

= 0 

= ~ <01~ -s A°, roll01> ° 

= ~W. <oI I I -s  Az ,m[Ioi> 2. (SA) z 

= O  

(23.17) 

(AOi~21mrIA01m2)sAm i 
(AOI%IImHAOI%)SAI~2= -3V-6-~OI,-S A~ ,~OI)2.(SA) ~ 

(gOIT2fl m[I AOlm 2) sA2T2 = 3~T@lll-s A= , m Iio1> 2. (s A)= 
Again, the same re la t i ons  apply to the overlap matr ix ,  i f  we omit the 
operator To In both cases/the matr ix  elements are reduced to s ix  lnde~ 
pendent parameters, the rotational invariants. 

Up to this point/we have made no reference to a special system of 

orbitals. In order to calculate the rotational invariants, we do this 

now and choose the Gauss type orbitals of ref. [46]. By comparing for- 

mula (13.3) to formula (4.1) of [46]~we conclude: 
" " la+Ib+'J " o 

<nalallABJl]nblb> J = ~-/4~.(-I) ~p.e~p(nanb,Jlalb,AB) , (23.18) 

where ~ and p are the orbital exponents of the bra- and ket-orbitals 

respectively. We use the following abbreviations: 

~p = ~ p / T r ~ ,  E)~ = ~ ,  ~p~p = arc tan(~/p)  (23.19) 
In the same wayTthe comparison of (13.3) to formula (4.3) of [46] yields 

the rotational invariants of the kinetic energy: 

<nalaU AB j , TIlnblb> j ( 23.20) 
la+lb+J j o 

= _(~52 p2/2m)~7~. (-i) ~p .e~p(nanb+i, Jlalb,AB) 

According to (4.2) of [46~the functions e°#(...) are given by: 

o Jlalb,AB ) (23.21) eep (nan b , 

= IN j ,  oo, J II%p Ilnal a, nbl  b , J]" ( =/2e~p 2~2~-f) • ~o ( ~ p ,  N j ,  AB) 

with N = na+nb+(la+lb-J)/2. Using the coefficients and Gauss-Laguerre 

type functions listed in appendix 3, we obtain the following six invar- 

iants: 

<oollo°noo> ° = ~74e~p 
~OI-sA°II O0> ° = (~W/4e~p). exp( -~p  s A2 ) 

<oill-sAil OO> i = - ( ~ ~ p  &p/2e~4p ) .  exp(-#~:p s As ) ( 2 3 . 2 2 )  

<olll o° l lo l>  ° = 3 ~ 3 - ~ p / z e ~ p  

{ l ' l - s A ° i l o l > °  = (T~%/~%4p)' (3_2~psA~) .exp(_~cq~SAZ ) 
~III_sA~II O1>2 ~ 4 = -(~-6~&~/B~p). e x p ( - / ~ S  A2 ) 

And with respect to the kinetic energy#we get: 
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~oollO°, TIIO0> ° 

(0011-SA°,TIIO0) ° 

(OI I I -sAi ,TI100)  -t 

<O~llo°,mllo~> ° 

<Otll-sA°,TIIO~> ° 

<o~.11 -s  ~ ,mll o~.> 2 

2 2 5 

= (V-mh2e ~ l~mO s ~ - ( 3 - 2 ~ ! 3 s A 2 ) . e x p ( q ~ I 3 S A 2  ) 

= -(V--xS_ 2 ~'~:18!B / 2mO~l~ )- ( 5-2#~xlBS~ ). exp(-~o~ SA2 ) 

: i 573"'~ ~:1~ / 2me~41B 
2 ~ 2me 4 2 A2 % A4 = ).exp(- =oS 
2 5 m 4 . 2 2 A2 = (v- ).exp(-/:ps 

(23.23) 

We finally come back to the example (23.9). Inserting (23.17 and 23) 

into (23.9) yields the reduced matrix element of the kinetic energy 

with respect-to the s.-a. MO of species Ti: 

~ AT:2, OJ.~2)Ti[I T iKAT2,01T2)TI> 
= <o i I Io° ,~ l lo~ .>  ° - <o~ . l l - sA° ,~ l lo~ .>  ° + F i - / ~ < ~ l l l - s  ~ , T l l o l > 2 . s  ~ 

: (V~-~22~p/2me4(z(B )" [~5-(15-6~ SA2 ) • exp(-~pSX2 )] (23.24) 
The corresponding element of the overlap matrix is: 

2 4 2 A2 <(AT2,OIT2)TI~AT2,OIT2)TI> = (3~B'~#(~/20(~[i-exp(-/(z~S)] (23.25) 

23.4. Step four: The ab initic calculation of the TRMs 

There finally remains the calculation of the TRMs of the nuclear at- 

traction. Working in the AB-PC scheme, we have the following relation 

of TRMs and rotational invariants, which is quite analogous to (15.14/ 

15): 
Cr -I ( A~aall II B~bb )Ayc (23.26) 

= ~GEO~ (Ala ~a'Blb~bl C~yo'J jL) @a lalIABJpCjlIBnbl~L , 
JJL 

where the geometrical factor is given by: 

GE~5(Ala~a,Blb~b,CAyciJjL)= 4E(2L+i)~I/dimc~ ~-- 52 (~yc,st. Sdqey~ 
yoarlelzcr'~ 

(23.27) lla+Ib +l J+j+) 
• Is|~ ~ ~+~ Isl~ ~ x J° B J~ P 

lamb c le ~c d+e + y ;SSd(A A)SDe( C A ) 

With respect to the group T d and to the low angular momentum quantum 

numbers, several multiplicity indices become obsolete. Further! all cen- 

tres involved are of type A: 

(Anala a,Ar-lll blbb)A ,c =  GEO (Alaa,Albb,AAyc,JjT) 
with • ~nalall AA~PA~ llAnbl~L ( 23.28 ) 

GEO'5 ( Alaa' Albb' A~yc' J JL) (23.29) 
i+I - + ~ .+. + = 4~(~T.+1)y I /d imo~Is (aabb~+) Is (~+eJ ÷) ~2 (ayo, st. 8d~e) S~d(AAA) SJe (,AA) 

In order to save space, it is advisable to compile the compound coeffi- 
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cients 

c2(Ayo,(JJ) Lc) + + 

= ~(2L+I)/dimc'.~Is (cLJ+J+)c a (Aye, st. 8dqe)S~d(AAA) S~e (PAn). (23.30) 
oa~e 

These coefficients can be calculated directly: 

+ .+ d+e + 

de jrm ~ ~c~d~e (23.31) 
> a Cpcl  >< %isol  dpJ eT- q sol  epJ 

According to section i3.3.2the vector belonging to S r is determined 

by the topological correlation 
--~ - ~AS ~r = ~ ~ (  ~lr)" ( ~ + ¢ ~ ) / (  2 +¢ ) (23.32) 

The isoscalar factors and s.-a. solid harmonics for this calculation 

are listed in appendix 4. The results can be checked by the sum rule: 

ycdimc ~ 02 (Aye, (Jj)Lc) ~2 = Z (A) (AAA) 2J (PAA) 2 J (2J+i) (2j +i)/16~ 2 (25.35) 

We arrange the results according to the triangles involved. Since the 

branching rules of the group chain R(3)mT d depend on the inversion 

property of the representations, we add the indices g or u to the quan- 

tum number L. 

I) The triangle is AoA. This means: A=AoA , S=O A' AAA=O, PAA=O. 

~ A c (~oAi,(OO)OgA I )  = 1/2~ (23.34) 

2) The triangle is ~A. This means: A=~oA , S=O A, AAA=O , PAA=sA. 

02 ~AoA~, (O0)OgA~) = ~ / 2 ~  02 ~_olT2, (02) 2 g T 2 ) A  = _~sAa/8~  

c a ([AoIT2 ' (Ol)luT2) = _ i~sA/4~ c a ~o2T2,(O2)2gT2 ) A  = ~ S  ~ / 8 ~  

c ~ ~1o~2T2, (01)%T 2) = -i~SA/4~, 02 (~'o~,, (02)2g~,) : WT~S A~/~ 
(23.35) 

3) The triangle is[ A. This means: A=~ A, S=S A, AAa=S A, PAa=~asA/(~2+~2). 

j,iT yc 
0 0 0g A i 

I 0 i u IT 2 

I O I u 2T 2 

Oll u IT 2 

O i i u 2T 2 

i i Og A i 

I I Ig T i 

I I 2g IT 2 

Table 27. The coefficients 

c a J j L Tc 

~'5/2~ 1 
if~sA/4~ 
if~sA/4~ 

i~-6~ 2 sA/4~(~ 2 +82 ) 
if-g~a sA/4~(~2 +82 ) 
-3p2S A2/2~(~2 +~ 2 ) 

0 
382 sA2/4~(a2 +~a ) 

c 2 (~?c, (Jj)LC). 
c 2 

i 2g 2T 2 
li2g E 

202g E 

20 2g IT 2 

20 2g 2T 2 
O 2 2g E 

0 2 2g IT 2 

0 2 2g 2T 2 

.382 s A2/4~(~ a +82 ) 

_362 s ~/4~(=2 +~a ) 
~s A218~ 
-f~s ~/8~ 
f~s A~/8~ 

f~U~4s ~/8~(~2 +82 )2 
_fF0~4SA~/8~(~2 +82 )2 
f35~4s ~/8~(~2 +82 )2 

4) The triangle isZ2 A. This means: ~=[A, S=S A, AAA=S A, pA~=a2sA/(a2+~2). 

c a ([~c, (Jj)Tc) = (_~2/~a )j.C a ~yc, (Jj)~c) (23.36) 
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5) The triangle is ZI A. This means:A=A A, S=S A, AAA=S A, and PA~= 

S A.~+[3#- +~2 p2,/(~2 +~2 ). The distances sA(between two vertices) and 

A (between vertex and centre) are related by A=sA.~-/~ '. 

Table 28. The coefficients c 2 (~yc,(Jj)Lc), 

0 0 0 g  A i ~6-/4= 
i 0 i u IT 2 i(~3-+3)SA/6= 

I O i u 2T 2 i~-~sA/4~ 

I 0 :~ 3T 2 : J 2 iCV:-6~3sA/:2~ 
0 : :u 1% is  (-VT~(~ +~ )43p2-6~2)/6r~(~+~ 2) 
0 i I u 2T 2 isA(~(~2+~2)+~pT)/4=(~2+~2) 

0 i I u 3T 2 isA(-~(cT+~2)+~'C~2+6~-~cT)/12z(~g+~a ) 

I 10g  A 1 3¢%SA2 (~2_~) /4~(~2+~)  
: :g 1T:t S A2 ( :~1-~+~+2~)/8~ 
: ~g aT: s~2(VTO-V:)/8,~ 

I : :g 3T~ S~(gS+l-V7)/4= 
i I 2g *E 3~28A2/8=(c~z+~ e) 

i 1 2g 2E 3V:S ~2 (2c~2+~ 2)/8~(c~2+~ 2) 
I I 2g iT 2 -sAa(~(~a-p2)+(~+~)(~2+~a))/4=(c~2+~2 ) 

1 2g 2T 2 sA~ (~(~2_~2)_~(~2+~a)) /8~(~2+~2 ) 
t t 2g 3T 2 sA~(-~(~2-~2)+(2~-~)(~2+~2))/8~(~2+~ 2) 

2 o 2g :s ~s~/8= 
2 o 2g 2s 3g:s ~ /8~  
2 0 2g IT 2 -5~-gska/12~ 

2 0 2g 2T 2 ~'~'SA~/4 ~ 
2 0 2g 3T 2 -5~sAe/~2~ 

0 2 2g SE- _~Sk~(~4+2~2~2)/4=(~2+~2)2 
0 2 2g 2E ~UsA2 (m4_2c~a~2_2#4)/4=(c~+~a)2 
0 2 2g IT 2 Ska(5~e#2-~2(~z+~2)+~e~-~#e(~2+#e))/3=(~2+#2)2 
0 2 2g 2T 2 SAa( 3 ~ - ~ # 2 + 5 ~ ( m 2 + # 2 ) ) / 6 ~ ( ~ + ~ 2 ) 2  
0 2 2g 3T 2 sA~(5~2~2-3 I~-~2(~+~2)-6~f12(~2+~a))/6~(~2+~2)~ 

These last coefficients are rather complex. In order to avoid this com- 

plexity, one has to transform the three-centre integrals into a scheme 

of distance vectors, which is independent of the orbital exponents 
and ~. 

With these results~we determine the geometrical factors. From ~23. 
29 and 30) follows: 

GEO5(Alaa,Albb'A6yclJjL) = 41~'~L-g-~'Is(la;lbcL;)'cZ(Al'c,(JJ) Lc) (23.37) 

Since the isoscalar factors with la,lb.<~ are very simple, we get the 
following equation: 

GEO5(Alaa,Albb~A~yc;JjL) = 4~di-~.c a (Ayc, (Jj)Lc) (23.38) 
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We now come back to the example (23.13). Using the tables 27 and 28! 

we obtain: 

(AOIT21]Ar-~AOIT2)TA T = O, (AOITollAr-lilaoITo)rA~ = O, (23.39) 

(AOIT21IAr-IIA0$T2)/~AyT = 4~V'3"c (~YTI,(II)IgTI)<AOIIIAA A PAllIA01> i . 
(23.40) 

Therefore the BRM of the operator V A is given by one rotational invar- 

iant only: 

(A0~T211VAIIAOiT 2) sAT= ( 3S A~/2) ( ~ + 7 + I 0 ~ - 2 ~ )  <AOIIIAAI PAOli AOi> ~ ( 23.41 ) 
As in the preceding subsection~we have not yet made reference to a 

special system of orbitals. We do this now in order to calculate the 

rotational invariants of eq.(23.28). For the Gauss-type orbitals of ref. 

[46] we have the general relation (A2.14). This relation now reads: 

<AOlall AAI ~A~[IAoI~ -- ( 4=/( 2T,+~)~ #o~@0~l~j. oD~ (O0,Llalb, J J, AAA,PA A ) (23.42) 
O According to (5.8) of [46] the functions ~ are given by: 

o 1 " ~ ( O 0 ' L l a  a'J~'AA''PAA) = -4EO(Z~N~n[NJ'nj'Lll~[lOla'Olb'L] (23.43) 

.~O( ~p,  Nj, AA A ). ~o (8=~, n-lj, PAA) 
The sum is limited by 2N+2n=la+Ib-J-j. Using again the coefficients and 

functions listed in appendix 3, we get the following rotational invar- 

iants: 

<AOOilAA~PA~IIAO0> ° 

<AO~ [I AA~APA~U AO0> I 

<A0i U AA2PAAI[I AO0> i 

<A0 "AAJ @IA0O 2 

<A011IA:~PA,°IIA0i> 2 

8 2 2 e 2 2 2 = ( ~ /%~)" xP(-~AA~,)'F0(%~PA~) 
_(16E2 83 • . 2 AA2~ 2 p 2 = ~p/ :~) exp£-9¢ ~ AJ.F0(e~p A~) 

= -(16E 2 ~/e2~) • exp(-~2~AA~) .Fi(e2~pA~) 

( 32~ 2 ( ~ -:2 )f~/%~ ) exp (-~ ~) % (e:~PA~) ( 23.44) 
2 e 2 2 2 

= (32~2 (~2_~2)~'Cc~/~13 ) .exp(- .~A~)"F i (O~PA~) 
= (8~'B~,2~3~ /5@~ )'exp(-~AA~)'Fo(9~PA ~) 

<AOIUAA~pA211A01> 2 = (32V~-OE 2 ~/58~).exp(-~AA~).F2(O~PAA)2 2 

The fifth invariant is the one needed in the example (23.41). 



121 

Appendix i: Projection operators 

In eq. (5.i) we have expressed the s.-a. LCAOs by the general SA~C 

coefficients (5.2). This representation is more expedient than that by 

projection operators. But, of course, it is possible to interrelate 

the s.-a. functions generated by both methods. 

The projection operators or more generally the shift operators of 

an irreducible representation c are defined by 

Pik = (dimc/ordG k(g .U(g) (Ai.l) 

If we apply such an operator to the atomic function ~AJ~aaP~ ~__ defined 

by (4.3), the resultant transforms according to the representation c, 

component i. The indices k, j, and Pa are redundant I but an unfortu- 

nate choice of them can yield zero, although a s.-a. function of spe- 

cies c does exist. Since the orbitals ~AJ~aaPa ~ induce the product re- 

presentation oA~a according to (5.3), the decomposition of the repre- 

sentation obeys the character rule resulting from (2.10): 

n(Aa, c) = (I/ordG)~(c)~C(C~a(c)oA(c) (AI.2) 

If now n(Aa, c)> i, there are s~veral independent sets of species c, 

which may be found by trying several combinations of the indices k, J, 

and Pa" On the contraryTthe indices ~, e, and y in (5.1) exactly ex- 

haust the set of species c induced by JAJ~aaPa ~. 

We calculate the result of the projection. Because of (5.3) we get 

P~k~AJ~aama) = (dimc/ordG)~-- ~D~k(g~Dn a m(g)aAij(g) IAi~aan ~ (AI.3) 
gcG nal a a v 

If we apply P~k to the molecular orbitals (5.i), we derive the fol- 

lowing interrelation: 
c c (Ai. 4) 

~(A~e,~aa)~cl ~ = Plkl(A~e,~aa)yck ~ =~K(~ck,Aj~e,ara)Plk~Ai~aar~ 
~r a 

This shows that the s.-a. MOs determined by (5.1) may be regarded as 

linear combinations of the projected orbitals (Ai.3), where the sum is 

taken for the redundant indices j and r a. The index k is arbitrary, 

but has to be the same in the SALC coefficient and the projector. 

The orthogonality relations of the SALC coefficients resulting from 

(2.26/27) and (3.6/7) allow the inversion of (AI.4). Starting from 

P~m~(A~e,~aa)yck~= 8(m,k).~A~e,~aa)ycl ~ one derives: 

C PlmlAJ~aaSa~ = ~--K(ycm,AjEe,asa).~(Ase,~aa)yel ~ (AI.5) 
cey 

This completes the wanted interrelations. 
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Appendix2: Molecular integrals of Gaussian functions 

In favor of the general validity~no reference wasmade to special 

orbital systems in section i3. Only the choice cf the distance vectors 

between the atomic centres has regard for the integrals of Gaussian or 

related crbitals. This appendix has two aims: At first the theorems, 

i.e. their rotational invariants~are illustrated for a particular sys- 

tem of crbitals; and secondly the proofs of the strong theorems con- 

cerning the three- and four-centre integrals are supplemented using 

this special system of orbitals. 

As well knownlthe GTOs are recommended by their simple integrals. 

We therefore choose the radial functions in (13.1) from this type. As 

explained in section 13ponly spherical orbitals have the adequate ten- 

sorial structure. Such orbital systems have been discussed in [45-47]. 

The most suitable for our purpose is that of [46]tand we routinely re- 

fer to this paper. The advantage of this system results from its gene" 

ration by the gradient operator: 

~I ccnlm~ = ~-2n-lAn~l m(~) exp(-~ 2 r 2 ) (A2.1) 

The right transformation property is achieved by inserting the opera- 

tot into the solid harmonics m(a)=(la) Ylm(a/a). As a function of 

operators we distinguish~m(~) from ~Iscl lm~ in order to avoid con- 

fusion. 
Emphasizing the general validity of the thecremstwe sketch the re' 

lations of this system to other orbital systems. As shown in C46]fthe 

definition (A2.i) leads to the following radial functions: 

Ni(nl ) • L~ +i / 2 ( ~2 r 2 ). exp ( _~2 r 2 ) 

Therefore the ordinary spherical GTOs as well as the spherical oscil- 

lator functions can be expanded as 

(~r)2nexp(-~2r2)~Isol lm~= N2(nl)-~=no(n+~/2)(-l)k~l~klm~ (A2.2) 

n n+l÷I/2 k 
~IOsc ~nlm~ = N3(nl).~=o( n-k )2 ~l~klm~ ! (A2.3) 

where N~(nl) are normalization constants. For other systems oferbi- 

tale, ~IXnlm~ = ~l(r)~Isol l~, result infinite series expansions 

with respect to the radial quantum number. The expansion coefficients 

can be calculated, because the polynoms 

N4(nl ) .L~+i/2(~ 2 r 2 ) ~sol lmlr ~ (A2.4) 

supplement the system (A2.i) to a biorthonormal system. Thence the • 

coefficients of the expansion 

are given by; 
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c~ = N4(nl)fI~+112(¢2r~)~l(r)r21+2dr (A2.6) 
0 

The multi-centre integrals contain products of the functions 

(A2.1) with respect to different centres. These products can be reor- 

ganized by a theorem given in [46], eq.(3.3): 
-2ni-I I n I . -2n2"l--n2 

,lll~L~ fl~l;L I 
= ~ ~[n315n414T, II91~lnllln212L][mlm2MJ tm3m4M / ( k 2 o 7 )  

n3.3n4.4 h " 

- - - 2 n 4 - 1 4  n 4 - . - ,  

where ~3=~1-~2, ~4=(=~1+=~2)/e12 , ?12=tan't(ctl/=2 ) , 0 1 2 = ~ ,  and 
~12=¢1¢2/912. The sums in (A2.7) are l imited by 2n3+13+2n4+14=2nl+ll 
+2n2+i 2. As for the coefficients of this expansion we again refer to 

[45, 46]~ and to appendix 3. 
The application of the operator ~m(~) to a scalar function f(r) 

results in 
~lm(~f(r) = gl(r)~Isol lm>, (A2.8) 

where the scalar functions are given by gl(r)=~.(~.~r)lf(r ). Be- 

cause of (A2.7)! we need the corresponding theorem with respect to the 

scalar functions of two vector variables r I and . This is given by 

ylm(~)~ m(~s)f(r~,r~,~ "~s) 
1 - J .  "~ " ~2-2 . . . . .  (A2.9) 

T----~Ll~]~t_2 _2 * .-~----I 1112L+~ -- 
= ~?~1~2,z-l,r2,rl r2) ~ 2L+I (mlm2M)~'~1,~'21sol(~122)LM> ! 

where the sums are limited ~ ~I+~-~11÷1 ~ and 11+1~-~I-~= even. 
infinite expansion of this type is trivial from the tensorial point of 

view. The limitation of the sums is the essential statement of (A2.9). 

The proof is given by a recursive calculation of the scalar func- 

tions ~l~z (A2.9) is obviously valid, if 11=12=O. The first function 

then is g°o°°=f. If now (A2.9) and the limitation hold for a pair of 

angular momenta 11 and 12, we deduce the same for the pair 11+1 and 12. 

For this purposelwe start from ~11+imI(~I)~ ~-~ .) decompose 
the first spherical harmonic by: ' 2 m V2)f(.. and 

+ 

~1+1m1(~1 ) = 
In order to perform the operation ~(~)=~V , we define the fol- 

lowing derivatives: 

~ l ¢ ~ x , , x o , ~  = ~ ~ ,~ l  1~ . . . .  ~g~¢~ ~x1'x~'x~ 

This yields: 
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i~> %dg~IGitrl,r2,ri r2)__ + ~l~23krl,r2,r i r 2) 

i f  we now insert these expressions into ~ l i . m i ( h ) g l 2 m ~ ) f (  • ) , ~  we 

get  a new equa t i on  o f  type  (A2•9) w i t h  l l + l _ ~  ~ ___ _ i n s t e a d  o f  11. The compar- 
i s o n  o f  t h e  o o e f f i o i e n t s  o f  t h e  f u n c t i o n s  - -  t h e n  

y i e l d s  the  r e c u r s l v e  foz~mula o f  the  s c a l a r  f t m c t i o n s :  
fl.12 L I F~SJ jlJ2 l =Jl~ +il~ O.,u:,.n~ 

~JlJ2 L ~ . ~ 1 ~ ,  ~1 L 1 

t o . L l ~ l  z ~1+1-J I  ~ L l ~ l ~ . , 2 ~ + l , 8 , J l , 1 1 _ l , , ~  ~1 J ~ ~ jJ 
• ~6~lJ21-rl + 6~IJ2 

(AZ.~O) 

+( i)J+L+iy( ~,~i~l~ 1 dzlllll~>g~l~z~'rz ] 
~LI~I~o only, if ~l+J1411+12,and {jllllll/~O only, if jl~l+l, Since 6~lj 2 

we have the limitation it+J2 ~I+I+J2 ~11+12+I. As for the second sum- 

maud~we conclude in the same way JI+~2@11+12 , j2 <- ~2+I and therefore 
ji+~2+1 Wl~+12+1'~ From both limits follows that gLl~+llz~oj J J$+J2 

only, if j1+J2~ll+12+l , which had to beshown. The recur~i~n with re- 
spect to 12 is found by a fitting exchange of indices• In the long run 

it is, of course, desirable to derive an explicit formula of the func- 
tions g. 

The analogue of (A2.9) involving three vector variables rl, r2, and 
r~ is given by: 

-~ 2 2 %,% 
= ~_~ n(j~j~jj~\rl,r2,r3,rl.r2,r 2 r3,r3-rl) (A2.11) 

Ji ~ ..~ ~ ~ ~ ~+ 
1.1~L L l~ . ~ ~ ~ ~ .. . 

The essential limitation of the sums is now jl+J2+J3 ~iI+12+i 3. The 
scalar functions h again can be calculated recursively. 

We now are prepared to discuss the particular integrals. As an ex- 

ample of the two-centre integrals (13.3)~we choose those involving the 

momentum operator. For this case~in [46J/the integral formula (4.5) 
has been derived, which reads: 

(~anal ama I Vp, I Bpnblbm ~ (A2.12) 
+ + + ' -,~ 

_ o n IIi IlL III 
- ~p(na b 'L a b 'AB)(mam M)(m ~ ~b)<~'~pA~Isol ~>, 

where _.~p has been defined above and ~op(...)_ is given by eq.(4.6) of 

[46]. From this follows the generalized reduced matrix element. Be- 

cause of the symmetric coupling used in (13.3); a 6j symbol is involved: 
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i+i +i 
• J a blJ <nalaUAB~nblb~ =~.~_~ oIIa I lb} ~J'e • ~ p~¢~ (nanb, j lalb I , AB) 

(A2.13) 
An example of the weak theorem of the three-centre integrals (13.8) 

is given by eq.(5.7) of [46]. The rotational invariants now are: 

~nalallABJPcJ~IBnbl~L= (4~/(2L+I))( J 8 j D ° (nanb,Llalb,Jj,AB.PC) (A2.14) 
p P P 

According to [46], eq.(5.8)•they depend on the distances AB and PC 
only. From the same equation follows the limitation of the sums in 
(13.8) by J+j .~2na+la+2nb+l b. Therefore J+j may be greater than la+l b. 

In order to prove the strong theorem we~start from an integral over 
two ns-orbitals, which is an invariant by itself: 

~anaO0 ~ rol ~ BpnbOO> j[~°p (nanb, 000, JJ, AB, PC) J ~.P~ = (~pAB- PC) PJ (~-~)'(A2.15) 

where Pj is a Legendre polynomial. In accordance to (A2.1)~ the higher 
functions are generated by l~nlm> = ~'l~m(V)I~nO0> and we can repre- 
sent the shifted orbitals by ~A~n~l~m~-~)-la~ ~(V^)IA~no00>. 

on can'inter - Since the gradient now operates theparameters ~, 

change it with the integration and generate the higher integrals from 
(A2.15) by: 

~nalamalrcI I Bpnblbm ~ (A2.16) 

= (_~)-la(_p)-lb E ~(~)E ~(~) <A~naOO~r;llBpnbOO> 

= ~-la.p-lb.~am(a~AC)~lbmb(~BC ) ~A~n aOO~r~ I ~Bpnb00 > 

we regard the integral QA~na00~rc1~BpnbO0~ as a function of AC and If 
B~ (which is possible), the theorem (A2.9) immediately supplies the 
intended result (13.9). But because of the more natural interpretation 
as a function of ~ and ~lwe reshape the derivations by (A2.7). This 
yields: 

l+l ~ + +_+_ -- • ~. ~ (,A~nalama~ r~i ~Bpnblbm~ = ~ ---- -- --~-'[njNJL~l~pllOlaOlbL ] (maamb~/)h (m ~ Ma MI )h 
njNJL (A2.17) 

-2n-j -2N-J -* n N -I 
• ~p e~p ~m (~AB)~jM(Vpc)AABA~C ~na001 r C I Bpnb00> 

with la+Ib=2n+j+2N+J1> j+J. Because the terms ~c~A~naOO~rcIIBpnbO0 ~ 
are scalar functions, the theorem (A2.9) applies now with respect to 
the vectors AB and P0. This yields the following expression of the 
rotational invariants of the strong theorem: 

I ! 
~nala~l ABJPc J II Bnblb~ (A2.18) 

. -r 

= (I/4=(2L+I) 2 )~----[njNJL~ U Ol nl 73.~-Jm-J.~nNjJ ,j(^=2 =n2,~.~) 
njNJ ~P" a~ b~J ~P~P 6nanbJ~ '~ 

The scalar functions g~nNjJxQ1 have to be calculated recursively by (A2. 
~b ~ 

• nNo~ -2n -2N n N -i 
iO) beginning with gnanbOO=~p e~ AAB~o<ASmaO01r c ~B~nbO0 >. From the 
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limit j+J>~ ~+j' according to (A2.9) follows la+lb ) J~j~as proposed. 

Since the expansions (A2.2-4) affect the radial quantum numbers only, 

the rotational invariants of the integrals of other orbital systems 

have the same group theoretical structure, 

-- ~~tXnalalIABJP0JlIBXnbl~L nan b i J j , T, = ~iCn Cn_<AnalallAB PC nBnbl ~ , 
n~n b a o 

and the strong theorem is valid for any system of atomic orbitals. 

We finally come to the four-centre integrals of the electronic in- 
teraction. First we discuss the weak version of (13.13). In order to 

separate the functions (13.12)~we have chosen the coupling different 

from that in eq.(6.4) of [46]. Because of the necessary recoupling~the 
rotational invariants of (13.13) read: 

[(Anal+, 0nclc)l U(ACJ' BD j2 )JPQJ311 (Bnbl~,Dndld) 11]L=~I/(4~) 3 (21+I)(21'+I~ 

"7--~" ~° (nanbncnd, llalc, 11bld , J3Pq, ~IJ 2,AC,BD,PQ) f~ g~'9 j' q, JtJ~/'? 
pq~ I L} 

with 9=[(~2 +y2 ) (p2 +62 )/(~2 +p2 +y2 +62 )]I/2. (A2.19) 

The invariants are functions of the distances A0, BD, and PQ only 

and not of the angles between them. 

The proof of the strong theorem follows the lines of that given for 

the three-centre integrals and we can be brief. As in (A2.16)! one gen- 

erates the integrals by the gradient operators with respect to the 

atomic centres: 

~nalam a , Bpnblbm b I r[12 ~ CYnclcm c , DSndldmd >= ( -~ ) -la( -P ) -Ib ( -Y ) -I c (-6) -Id 

• ~ .(V-~A)~ ~(~B)fl m(~C)~ m(V~)<Amaa00,BpnbOOlri~O1meOO,DSndO$ 
U~a~a = ~b-b u c c i ~d d 

By repeated application of (A2.7) 7 the differential operators are adapt- 

ed to the distances A~, BD --~, and ~. This leads to the scalar functions 
I 4 I 

~ ~ ~ ~ ~ .-2n.-2n.-2N-2N-J-J+K f(AC a ,BD 2 ,pQ2 IAG,/jjOl/jjO./fqlfq.AU) = ~C~ ~6 ~G~ 

n n' N+~f+(J+J-K)/2 -1 
"AAC~D~Q /--~(ZnaO0, BpnbO01 r 1210yncO0, D6nd00> 

with ~=~y._ and ~=~RS'~ Because of (A2.11) the derivatives of these func- 

tions have the structure 

= ~(Jjl)kKL t^~2 --*--- . t  + + ~T~ "(SIS2)IS~ ~ '''''2Q'AO)'(~)(~/i~'~'~Is°l(JlJ2)TJ3~ 
I with the limitation J1+j2+j 3 4J+j+K. In am alcgy to (A2.18), this 

leads to the rotational invariants of the strong theorem (13.15). Us- 

ing the abbreviation F l~(4x) 3 (21+I) (21'+I) (2L+I) ( 2K+I~2 the result 

reads: 
[(Anal+, 0nclc)l 1 (AOJ~ BDJ2 )IpQJ3 ~ (Bnbl~,Dndld)ISL = (A2.20) 
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1 K 
L1 )~T~8~ (A2.20) 

~ ( ~ j 2 ) ~ j ~ , ,  ,BD ~ ,Po ~ ,A~-~,~ .~ ,~ .A- 'C)  

The balance of the angular momenta follows from la+lc=2n+j+2N+J ~j+J, 
I t ~ I l I . , , I  I 

lb+ld=2n+j+2~+~ j+J, aud J+J ~K. Th~s results in la+lb+lo+ld~ 3+J+J+J 

j+J~K ~ ji+j2+J3, which had to be shown. 
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Appendix 3: Modified Moshinsky-Smirnov coefficients and Gauss-Laguerre 

type functions 

In this appendix?we compile the coefficients involved in the eqs. 

(13o10/11), (23.21 and 43), (A2.7, 17/18 and 20) as far as they are 

neeeded in section 23. The coefficients are related to the Moshinsky- 

Smirnov coefficients by a different normalization: 

[nlll,n212,L~Hn313,n414,L ] (A3.1) 

= (2L+l).A(nlll)A(n212)A(n313)-IA(n414)-l~nlli,n212LlJ~In313,n414,L~/ 
where 

A(nl) = ~4~/(2n+21+l)!I(2n)!!' (A3.2) 

The Moshinsky-Smirnov coefficients have been calculated by the formulae 

(Ii) and (23) in a paper of Trlifaj ~2]. In addition to the references 

given in [45], we mention the papers of Dobe~ [73] and Niukkanen [74]. 

The coefficients are arranged according to the sum K=2nl+ll+2n2+12=2n3 

+13+2n4+14 and to the angular momentum quantum number L. 

Table 29. The modified Moshinsky-Smirnov coefficients 

KT, 

00 

II 

20 

nllln212' 

0 0 . 0 0  

0100 

OiO0 

O00i 

0001 

I000 

I000 

I000 

OOiO 

OOiO 

0010 

0101 

0101 

0101 

n313n414 

0000 

0100 

0001 

0"I00 

0001 

I000 

OOiO 

0101 

I000 

0010 

OiOl 

I000 

OOiO 

0101 

21 0101 0101 

22 0 2 0 0  

0 2 0 , 0  

0 2 0 0  

0 0 0 2  

0 0 0 2  

0 0 0 2  

0 1 0 1  

0 1 0 1  

0 2 0 0  

0 0 0 2  

0 1 0 1  

0 2 0 0  

0 0 0 2  

0 1 0 1  

0 2 0 0  

0 0 0 2  

[nlli,n212,~ll~lln313,n#14,L] 
¢ 

3cos~ 

-3sin? 

3sin? 

3cos? 

cos 2 

sin 2 

-~sin~. cos~ 
sin 2 

cos2~ 

~-3sin~ • cos~ 

~-3sin~ • cos~ 

-~sin?. cos? 

cos 2 ?-sin 2 

5cos2~ 

5sin 2 

-~Usin~ • cosy 

5sin 2 

5cos2~ 

~sin~- cos~ 

~sin~. cos~ 

-~Us in~ • cos~ 
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K L nllln212 

2 2  0101 

31 

4O 

42 

I I 

11 

II 

I I 

II 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

O0 

I I 

I i 

11 

I I 

II 

II 

2 0 0 0  
2 0 0 0  
2 0 0 0  
2 0 0 0  
2 0 0 0  
2 0 0 0  
1 2 0 0  

0 0 1 2  
0 0 1 2  

Table 29. (continued) 

n313n414 [nlll, n212, LII~II n313, n414, L] 

0 I 0 I 5(cos2~-sin2~) 

I I 0 0 3cos3~ 

I 0 0 I 3sin~.cos~ 

0 I I 0 3sin2~.cos~ 

0 0 I I -3sin3~ 

0 2 0 I -3~'~sin2~.cos~ 

0 I 0 2 3~-2sin~.cos 2 

I I 0 0 3sin3~ 

i 0 0 I 3sin2@.cos~ 

0 I I 0 3sin~.cos2~ 

0 0 I I 3cos3~ 

0 2 0 I 3~sin2~.cos@ 

0 I 0 2 3~sin~.cos2~ 

2 0 0 0 cos4~ 

I 0 I 0 sin 2~.cos 2 

0 0 2 0 sin4~ 

t I 0 I -~sin@.cos3@ 

0 I I I ~sin3~.cos~ 

0 2 0 2 ~FS-sina~-cosZ~ 
0 i I I -~sin3~.cos~ 

0 I I I ~sin~.cos3~ 

I i 0 I ~sin3~.cos~ 

For the calculations in section 23, we further list the Gauss- 

Laguerre type functions occurring in the eqs.(23.21 and 43): 

~°(~,-ll,r) = (-2)1-I~i(~r~) 

~o(~, Ol,r) = (-2)l.exp(-~2r 2) 

~o(~, 11,r) = (-2)!+l(21+3-2~2r2).exp(-~2r2) 

9 ° ( g, 21, r )  = ( - 2) 1+2 [ (21+3)  ( 21+5 ) -4  ( 21+5 ) a~ r 2 +4~4r¢]  • exp ( _~2 r 2 ) 
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Appendix 4, Isoscalar factors ands.- a. solid harmonics of the 6roup T d 

In the followingjthe indices g (gerade) and u (ungerade) mark the 

even or odd parity of the irreducible representations of the group SO(3). 

Table 30. S0(3) compatibility table for the group T d. 

so(3) I o5 °u Ig i u 2~ 2 u 

Td I Al A2 Tl T2 E+T2 E+Ti 

Og 

0 u 

Ig 

In 

Ig 

$g 

i u 

ig 

ig 

i u 

i u 

ig 

Ig 

Table 31. The 

k I a b c 

Og Og A i A i A i 

O u Og A 2 A 2 A i 

Ig Og T i T i A i 

I u 0g T 2 T 2 A i 

luO u T I T 2 A 2 

ig Ig T I T I T i 

i u Ig T 2 T 2 T i 

ig 2g T i T i E 

l g  2g T i T l T 2 
i u 2g T 2 T 2 E 

i u 2g T 2 T 2 T 2 

i u 2 u T i T 2 E 

i u 2 u T i T 2 T i 

Table 32. The 

I 

0 

i 

i 

i 

2 

2 

2 

2 

2 

isoscalar 

Is 

i 

i 

i 

i 

i 

i 

i 

se--ae 

a p 

A i i 

T 2 x 

T 2 Y 

T 2 z 
E i 

E 2 

T 2 X 

T 2 Y 

T 2 z 

factors Is( jkl~ with -abc j 
k 1 

2g 2g Og 

2g 2g Og 

2 u 2 u Og 

2 u 2 u Og 

2g 2 u 0 u 

2g 2 u O u 

+k+l~4. 

a b c Is 

E E A i VT/K 

T 2 T 2 A i 

E E A i 

T i T ! A i 

E E A 2 

T 2 T i A 2 

solid harmonics of the group T d 

~Isol lap> 

iV3-/%~ • x 

i~-/~-y 

-V~/~-6~( 3z 2 -r 2 ) 

-VY~/E~ (x 2 -y2 ) 

-V~--/~. xy 
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List of standing abbreviations 

AO 

BRM 

CFP 

CI 

dim.. o 

GEO 

GTO 

Is 

LCAO 

MO 

NSR 

ord... 

PIe 

PRM 

Q~ 

QSALC 

RME 

8 • -a° 

SALC 

SR 

STO 

TRM 

TSALC 

VB 

WET 

Z(...) 

atomic orbital 

bicentric reduced matrix element 

coefficient of fractional parentage 

configuration interaction 

dimension of ... 

geometrical factor 

Gauss type orbital 

isoscalar (factor) 

linear combination of atomic orbitals 

molecular orbital 

non-simply reducible 

order of ... 

polyhedral isoscalar (factor) 

polyhedral reduced matrix element 

quadrocentric reduced matrix element 

quadrocentric SALC 

reduced matrix element 

symmetry-adapted 

symmetry-adapted linear combination 

sSmply reducible 

Slater type orbital 

tricentric reduced matrix element 

tricentric SALC 

valence bond 

Wigner-Eckart theorem 

number of ... 
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Index 
The numbers refer to pages, the numbers in brackets to special 

equations. 

annihilation operators, 75, 81 

back-coupllng rule, II(2.44) 
bicentric matrices, 22-29 

generalized, 24 (4.12) 
product of, 51 (6.i5) 

bicentric reduced matrix element 
(BRM),22-25 (4.4 and 
generalized, 24 (4.$5) 
of a product, 51(6.16) 
of atomic orbitals,62(15.7) 
of floating orbitals,69(17.9) 

Biedenharn-Elliott sum rule,li(2.45) 
bra-ket notation, 8 
branching rule,7 (2.11 and 12), 97 

chains of groups, 15-15 
characters, 7-8 
Clebsch-Gordan coefficients,iO 
coefficients of fractional 

parentage,78(19.2o),79(19.26) 
polyhedral, 84(20.18) 

commutation relations, 76(19.8-I0), 
78(19.17), 81(20.2) 

conjugation, 
of representations, 6 
of bases, 8 
of 5jm symbols, 9(2.28) 

of 90 symbols, 12(2.51) 
of isoscalar factors, 14(2.76) 
of operators, 15(2.60) 
of polyhedral isoscalars, 30(6.8) 

contragredient basis, 8 
coset decomposition of space 

groups, 86-87 
creation operators, 75,81 

decomposition, 7 
density, 

symmetry-adapted, 39-40 
matrix, 76,79-80 

de Shalit, rule of, 12(2.54) 
double tensor, 16(2.87 and 88) 

Einstein convention, 8-9(2.20) 
equivalent sets, 17-21, 32~33, 

41,82 
expansion theorem t 19(3.16 and 17), 

33(7.11 and 12), 41(I0.5 and 16) 
of symmetry-adapted harmonics, 
8-9(2.20) 

factorization, 
of bicentric matrices, 22(4.4 ), 
24(4.1Z) 
of matrix elements, see 
Wigner-Eckart theorem 
of quadrooentric matrix elements, 
4z(:i.z) 
of tricentric matrix elements, 
36(8.1) 

floating orbitals, 68 (17.2) 

Gaussian functions, 122,129 
geometrical factor, 

general, 3-4 
of Griffith, 79(19.25) 
G~O, ,27(5.7),112(25.8),$13 
GEO: ,83(20.13) 
GEO; ,38(8.17) 
GEO ,46(II.20) 
GEO ,62(15.8) 
GEO ,63(15.15) 
GE~ ,I17(23.27) 
GEO ,63(15.17) 
GEO ,64(15.21) 
GEO ,64(15.23) 
GEO ,85(20.22) 
GEO 0,85(20.24) 

H~ckel parameter, generalized,73 

induced representation, 
by Edges, 17(3.3) 
by ,riangles,52(7.1) 
by pseudo-tetrahedra,41 
by higher polyhedra, 82 
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integral theorems,52(13.3), 
53 (13.8/9), 56 (13.13) 

integrals 
two-centre,52-53,59 
three-centre,53-56,59-60 
four-Centre,56-57,60 
of Gaussian functions,It6-117,120, 
122-127, 

invariants 
bicentric, 23,24 
molecular, 3,27 
point group, 59-60 

polycentric, 61-64,83 
rotational, 52,56,72 

isoscalar factors, 14 
of the group chain T d~ G,130 

J-symbols 
3Jm symbol,9 
4jm symbol, 34(7.15) 
6j symbols,lO 
9j symbols,ll 

kanonical molecular orbitals, 
71(18,2) 

orthogonality relations, 
of polyhedral isoscalar factors, 

first kind, 30 (6.9 and 10) 
second kind, 35 (7.23 and 24) 
third kind, 42 (10.16 and 17 ) 

of SALC coefficients, 18 (3.6/7) 
of symmetry--adaption coeffi- 

cients, 14 (2.70 and 71) 
of standard functions, 48 (12.3/6) 
of topological matrices, 29 (6.2 

and 3), 34(7.13 and 14), 4!(lo. 
7 and 8), 42(I0.11 and 12) 

overlap matrix, 71 

point group invariants, 59-60 
polyhedral CFP, 84 (20.i8) 
polyhedral isoscalar factor, 

of the first kind, 26, 30(6.5/6) 
of the second kind, 35(7.21/22) 
of the third kind, 42(10.14/15) 
generalized, 83 (20.12) 

polyhedral reduced matrix element 
(PI{M), 83 (20,8) 

product groups, 15 
product of bicentric matrices, 

3i (6.15) 
projection operators, 121 
pseudo-tetrahedra, 4i-42 

L~wdin orbitals, 73(18.13) 

Moshinsky-Smirnov and related 
coefficients,54,123,128 

Mulliken approximation, 66 

non-simply reducible, 6 
non-symmorphic spacegroup, 90 

occupation operators,75-85 
orthogonality relations 

of characters,7(2.8and 9) 

quadrccentric reduced matrix 
element (QRM),43(ii.3) 

quadrocentric SALC coefficients,41 
quasi-ambivalence, 8(2.i9) 

of  

of 

of 

of 
of 
of 
of 

Racah~s back, coupling rule,ll(2.44) 
Racah's factorization lemma,14(2.73) 

generalized,30(6.5) 
reduced many-particle matrix element, 

in the MO scheme,79(19.22) and 
(19.27) 
in the VB scheme,83(20.11 and 13) 

reduced matrix element(RME),i~,i6 
bicentric (BRM), 22(4.4),24(4.13) 
polyhedral (PRM) ,83 
quadrocentr£c (QRM), 43(11.3) 
tricentric (TRM), 36(8.1) 

generalized topological matrices of s.-a. molecular orbitals,26 
82(2o,6) (5.5,6 and 8) 
geometrical factors GE01,27(5.9 of valence bond functions,85 
and iO) (20.23) 
irreducible representation 
matrices, 6(2.4) representation 
isoscalar factors, 15(2.77/78) induced 17,32,41,82 
3jm symbols, 9 (2°26 and 29) in Hilbert space, 6(2.6),82(2i.2) 

irreducible,6 6j symbols, II(2.43) 
9j symbols, 12(2o55) of space groups, 86-88 

rotational invariants, 52-57 
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SALC coefficients,18-21,26(5.2), 
of the tetrahedral group Td, 
96-i02 

scalar functions of group Td,94 
simple phase groups, 8(2.16) 
simply reducible groups~iO 
solid harmonics,52(13.4) 

coupled,53 ($3.7),56(15.i2) 
of group Td,150 

spherical harmonics,20(5.18) 
symmetry-adapted,20(3.19) 

space groups,86-92 
spinor representation,8 
standard functions,47-49 

of group Td,93-96 
structural matrix,72 
symmetry~ 

of 3jm symbols, 9-~0 
of 6j symbols,iO 
of 9j symbols,12 
of isoscalar factors,14 
of polyhedral isoscalar factors, 
30(6.8) 

symmetry-adapted (s~a~, 
gemlnals, 39-40 
densities,39-40 
function,22(4.1 and 2) 
harmonics,20(3.19) 
linear combination (SA~C), 
18(3.9) 
LCAO-MO,26 (5.1 and 2) 
tight-binding functions 88-91, 

symmetry- adaption coefficients, 
i4,29 

symmetry coordinates, 5, IOi 
symmorphic space groups, 88-90 

tensor operator,15 
tetrahedra,see pseudo-tetrahedra 
tetrahedral group Td, 93-120 
tetrahedral structures, 93-iii 
theorem, 

of expansion,19(3.16 andi7), 
3~(7.iI and i2),41~I0.5 and 6) 
of factoriz~tion,22(4.4),36 
(8.I),43<Ii.~) 
cf Frobenlus and Schur,7(2.15) 
of Kopsky, 47-49 
of Maschke, 18 
of standard functions, 48 
of Wigner and Eckart (WET),I3 
(2.59), 52(13.5),58 

tlght-binding functions 88(21.12), 
91(21.23) 

topological matrix, 
of edges i~rlangles,17(5.i) 
of triangles,33(7.7),54(7.16) 
of general polyhedra,82(20.5) 
and (20.7) 
of pseudo-tetrahedra,41(lO.l), 
42(10.9) 
of group Td, IO3-IO9 

topological operator, 72 
triaa,7 
triangles 32-33 
triangular invariants, 36-38 
triangular representations,34-35 
triangular SALC coefficients 

(~SA~C),32 
trlcentric reduced matrix element 

(T~),36(8.1) 

valence bond picture,81-85 
vector representation,8 

Wigner-Eckart theerem(WET),i3 
(2.59),52(13.3),58 

Wigner-Racah algebra,6 
Wigner-Seitz cell 88,90 
Wolfsberg-Helmholtz approximation, 
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